Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical Fano resonance of an individual semiconductor nanostructure

Abstract

Fano resonances with a characteristic asymmetric line shape can be observed in light scattering, transmission and reflection spectra of resonant optical systems1. They result from interference between direct and indirect, resonance-assisted pathways. In the nanophotonics field, Fano effects have been observed in a wide variety of systems, including metallic nanoparticle assemblies2, metamaterials2,3 and photonic crystals4,5. Their unique properties find extensive use in applications, including optical filtering, polarization selectors, sensing, lasers, modulators and nonlinear optics6,7,8,9,10,11. We report on the observation of a Fano resonance in a single semiconductor nanostructure, opening up opportunities for their use in active photonic devices. We also show that Fano-resonant semiconductor nanostructures afford the intriguing opportunity to simultaneously measure the far-field scattering response and the near-field energy storage by extracting photogenerated charge. Together they can provide a complete experimental characterization of this type of resonance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near and far-field characterization of Fano resonances in a high-index semiconductor nanostructure.
Figure 2: Theoretical study of the Fano resonance observed from a Si nanostripe under different illumination conditions.
Figure 3: Measurement and simulation of the scattering spectra of Si nanostripes.
Figure 4: Measured absorption spectra from a Si nanostripe for different illumination conditions.

Similar content being viewed by others

References

  1. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  2. Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

    Article  Google Scholar 

  3. Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    Article  CAS  Google Scholar 

  4. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  Google Scholar 

  5. Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J. & Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91, 183901 (2003).

    Article  CAS  Google Scholar 

  6. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  CAS  Google Scholar 

  7. Chen, C. Y., Un, I. W., Tai, N. H. & Yen, T. J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express 17, 15372–15380 (2009).

    Article  CAS  Google Scholar 

  8. Lahiri, B., Khokhar, A. Z., De La Rue, R. M., McMeekin, S. G. & Johnson, N. P. Asymmetric split ring resonators for optical sensing of organic materials. Opt. Express 17, 1107–1115 (2009).

    Article  CAS  Google Scholar 

  9. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008).

    Article  CAS  Google Scholar 

  10. Chang, W-S. et al. A plasmonic Fano switch. Nano Lett. 12, 4977–4982 (2012).

    Article  CAS  Google Scholar 

  11. Samson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105–143103 (2010).

    Article  Google Scholar 

  12. Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    Article  CAS  Google Scholar 

  13. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  14. Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    Article  CAS  Google Scholar 

  15. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  16. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  CAS  Google Scholar 

  17. Ye, Z. et al. Mapping the near-field dynamics in plasmon-induced transparency. Phys. Rev. B 86, 155148 (2012).

    Article  Google Scholar 

  18. Walsh, G. F. & Dal Negro, L. Enhanced second harmonic generation by photonic–plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 13, 3111–3117 (2013).

    Article  CAS  Google Scholar 

  19. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  20. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    Article  CAS  Google Scholar 

  21. Cao, L. Y., Fan, P. Y., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    Article  CAS  Google Scholar 

  22. Muskens, O. L. et al. Large photonic strength of highly tunable resonant nanowire materials. Nano Lett. 9, 930–934 (2009).

    Article  CAS  Google Scholar 

  23. Cao, L. Y., Park, J. S., Fan, P. Y., Clemens, B. & Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    Article  CAS  Google Scholar 

  24. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    Article  CAS  Google Scholar 

  25. Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    Article  CAS  Google Scholar 

  26. Fan, P. et al. An invisible metal-semiconductor photodetector. Nature Photon. 6, 380–385 (2012).

    Article  CAS  Google Scholar 

  27. Ruan, Z. & Fan, S. Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J. Phys. Chem. C 114, 7324–7329 (2010).

    Article  CAS  Google Scholar 

  28. Søndergaard, T. & Bozhevolnyi, S. Strip and gap plasmon polariton optical resonators. Phys. Status. Solidi B 245, 9–19 (2008).

    Article  Google Scholar 

  29. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Article  Google Scholar 

  30. Luk’yanchuk, B. S., Miroshnichenko, A. E. & Yu, S. K. Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. J. Opt. 15, 073001 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Global Climate and Energy Project at Stanford University and the Department of Energy Grant No. DE-FG07ER46426

Author information

Authors and Affiliations

Authors

Contributions

P.F., Z.Y., S.F. and M.L.B. conceived the ideas for this paper. P.F. and Z.Y. designed, fabricated and simulated the device structures. P.F. wrote the initial draft of the manuscript. S.F. and M.L.B. supervised the project.

Corresponding authors

Correspondence to Pengyu Fan or Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Yu, Z., Fan, S. et al. Optical Fano resonance of an individual semiconductor nanostructure. Nature Mater 13, 471–475 (2014). https://doi.org/10.1038/nmat3927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing