Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Precambrian microcontinent in the Indian Ocean

Abstract

The Laccadive–Chagos Ridge and Southern Mascarene Plateau in the north-central and western Indian Ocean, respectively, are thought to be volcanic chains formed above the Réunion mantle plume1 over the past 65.5 million years2,3. Here we use U–Pb dating to analyse the ages of zircon xenocrysts found within young lavas on the island of Mauritius, part of the Southern Mascarene Plateau. We find that the zircons are either Palaeoproterozoic (more than 1,971 million years old) or Neoproterozoic (between 660 and 840 million years old). We propose that the zircons were assimilated from ancient fragments of continental lithosphere beneath Mauritius, and were brought to the surface by plume-related lavas. We use gravity data inversion to map crustal thickness and find that Mauritius forms part of a contiguous block of anomalously thick crust that extends in an arc northwards to the Seychelles. Using plate tectonic reconstructions, we show that Mauritius and the adjacent Mascarene Plateau may overlie a Precambrian microcontinent that we call Mauritia. On the basis of reinterpretation of marine geophysical data4, we propose that Mauritia was separated from Madagascar and fragmented into a ribbon-like configuration by a series of mid-ocean ridge jumps during the opening of the Mascarene ocean basin between 83.5 and 61 million years ago. We suggest that the plume-related magmatic deposits have since covered Mauritia and potentially other continental fragments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crustal thickness map based on gravity inversion and the Réunion hotspot chain.
Figure 2: U–Pb concordia diagram.
Figure 3: Late Cretaceous to Eocene plate reconstructions.

References

  1. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hotspot tracks: Plume heads and tails. Science 146, 103–107 (1989).

    Article  Google Scholar 

  2. Duncan, R. A. in Proc. Ocean Drilling Program Scientific Results Vol. 115 (eds Duncan, R. A., Backman, J. & Peterson, L. C.) 3–10 (1990).

    Google Scholar 

  3. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspot in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  4. National Geophysical Data Center, National Oceanic and Atmospheric Administration, US Department of Commerce, http://www.ngdc.noaa.gov/mgg/.

  5. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  6. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. C. & Ashwal, L. D. Diamonds sourced by plumes from the core mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  7. Vlastelic, I., Lewin, E. & Staudacher, T. Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth Planet. Sci. Lett. 248, 379–393 (2006).

    Article  Google Scholar 

  8. McDougall, I. & Chamalaun, F. H. Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Geol. Soc. Am. Bull. 80, 1419–1442 (1969).

    Article  Google Scholar 

  9. Moore, J. et al. Evolution of shield-building and rejuvenescent volcanism of Mauritius. J. Volc. Geothermal Res. 207, 47–66 (2011).

    Article  Google Scholar 

  10. Paul, D., White, W. M. & Blichert-Toft, J. Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochem. Geophys. Geosyst. 6, Q06007 (2005).

    Article  Google Scholar 

  11. Paul, D., Kamenetsky, V. S., Hofmann, A. W. & Stracke, A. Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. J. Volc. Geothermal Res. 164, 76–94 (2007).

    Article  Google Scholar 

  12. Grimes, C. B. et al. Trace element chemistry of zircon from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 7, 643–646 (2007).

    Article  Google Scholar 

  13. Simonetti, A. & Neal, C. R. In-situ chemical, U–Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth Planet. Sci. Lett. 295, 251–261 (2010).

    Article  Google Scholar 

  14. Pilot, J., Werner, C. D., Haubrich, F. & Baumann, N. Paleozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature 393, 676–679 (1998).

    Article  Google Scholar 

  15. Greenhalgh, E. E. & Kusznir, N. J. Evidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion. Geophys. Res. Lett. 34, L06305 (2007).

    Article  Google Scholar 

  16. Collier, J. S. et al. Factors influencing magmatism during continental breakup: New insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins. J. Geophys. Res. 114, B03101 (2009).

    Google Scholar 

  17. Chaubey, A. K. et al. Analyses of multichannel seismic reflection, gravity and magnetic data along a regional profile across the central-western continental margin of India. Marine Geol. 182, 303–323 (2001).

    Article  Google Scholar 

  18. Henstock, T. J. & Thompson, P. J. Self-consistent modelling of crustal thickness at Chagos-Laccadive ridge from bathymetry and gravity data. Earth Planet. Sci. Lett. 224, 325–336 (2004).

    Article  Google Scholar 

  19. Collins, A. S. & Windley, B. F. The tectonic evolution of Central and Northern Madagascar and its place in the final assembly of Gondwana. J. Geol. 110, 325–339 (2002).

    Article  Google Scholar 

  20. Ashwal, L. D., Demaiffe, D. & Torsvik, T. H. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: Evidence for an Andean arc origin. J. Petrol. 43, 45–83 (2002).

    Article  Google Scholar 

  21. Collins, A. S., Kinny, P. D. & Razakamanana, T. Depositional age, provenance and metamorphic age of metasedimentary rocks from southern Madagascar. Gondwana Res. 21, 353–361 (2012).

    Article  Google Scholar 

  22. Storey, M. et al. Timing of hot spot-related volcanism and the break-up of Madagascar and India. Science 267, 852–855 (1995).

    Article  Google Scholar 

  23. Torsvik, T. H. et al. Late Cretaceous India-Madagascar fit and timing of break-up related magmatism. Terra Nova 12, 220–225 (2000).

    Article  Google Scholar 

  24. Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).

    Article  Google Scholar 

  25. Ganerød, M. et al. in The Formation and Evolution of Africa: A Synopsis of 3.8 Gyr of Earth History Vol. 357 (eds Van Hinsbergen, D. J. J., Buiter, S. J. H., Torsvik, T. H., Gaina, C. & Webb, S. J.) 229–252 (Geol. Soc. Lond. Spec. Publ., 2011).

    Google Scholar 

  26. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J. Geophys. Res. 117, B09101 (2012).

    Article  Google Scholar 

  27. Lénat, J-F, Merle, O. & Lespagnol, L. La réunion: An example of channeled hot spot plume. J. Volc. Geothermal Res. 184, 1–13 (2009).

    Article  Google Scholar 

  28. Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. 102, 10001–10012 (1997).

    Article  Google Scholar 

  29. White, W. M., Cheatham, M. M. & Duncan, R. A. in Proc. Ocean Drilling Program Scientific Results Vol. 115 (eds Duncan, R. A., Backman, J. & Peterson, L. C.) 53–61 (1990).

    Google Scholar 

  30. Corfu, F. U–Pb age, setting, and tectonic significance of the anorthosite–mangerite–charnockite–granite-suite, Lofoten–Vesterålen, Norway. J. Petrol. 45, 1799–1819 (2004).

    Article  Google Scholar 

  31. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 1003 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. R. Neuman for discussions, and C. Mac Niocaill for constructive comments. The European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Grant Agreement Number 267631 (Beyond Plate Tectonics), the Norwegian Research Council (Topo-4D) and the Centre for Advanced Study are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

T.H.T., H.A. and B.J. developed the conceptual idea for the study, H.A. and E.H. sampled the Mauritius rocks, F.C. dated the samples, N.K. calculated the crustal thickness map, C.G. and T.H.T developed detailed reconstructions, P.D. and B.S. developed global plate motion frames, and L.D.A. and B.J. handled geochemical aspects. All authors contributed to discussions and writing of the manuscript.

Corresponding authors

Correspondence to Trond H. Torsvik, Carmen Gaina or Pavel V. Doubrovine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torsvik, T., Amundsen, H., Hartz, E. et al. A Precambrian microcontinent in the Indian Ocean. Nature Geosci 6, 223–227 (2013). https://doi.org/10.1038/ngeo1736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing