Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses

A Corrigendum to this article was published on 01 June 2008

This article has been updated

Abstract

Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NFκB-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the Y537S ERα–Grip1 complex.
Figure 2: Identification of a mutation that stabilizes the antagonist conformation of ERα.
Figure 3: A solvent-accessible channel in the Y537S ERα LBD.
Figure 4: Comparison of ERα wild type and Y537S crystal structures.
Figure 5: Transcriptional activity of NFκB-selective ER ligands.
Figure 6: Crystal structures of ER bound to NFκB-selective compounds.
Figure 7: Structural and biological characterization of an intermediate agonist.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 01 May 2008

    In the version of this article initially published, the 13th author's last name is misspelled. The author's name should read 'Andrzej Joachimiak'. Additionally, Figure 5 of this article inadvertently contains pink traces in each panel that are not attributed to any specific molecule. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Schulman, I.G. & Heyman, R.A. The flip side: identifying small molecule regulators of nuclear receptors. Chem. Biol. 11, 639–646 (2004).

    Article  CAS  Google Scholar 

  2. Chadwick, C.C. et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc. Natl. Acad. Sci. USA 102, 2543–2548 (2005).

    Article  CAS  Google Scholar 

  3. Steffan, R.J. et al. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem. 47, 6435–6438 (2004).

    Article  CAS  Google Scholar 

  4. Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  Google Scholar 

  5. Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  6. De Bosscher, K. et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc. Natl. Acad. Sci. USA 102, 15827–15832 (2005).

    Article  CAS  Google Scholar 

  7. Weis, K.E., Ekena, K., Thomas, J.A., Lazennec, G. & Katzenellenbogen, B.S. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10, 1388–1398 (1996).

    CAS  PubMed  Google Scholar 

  8. Zhong, L. & Skafar, D.F. Mutations of tyrosine 537 in the human estrogen receptor-alpha selectively alter the receptor's affinity for estradiol and the kinetics of the interaction. Biochemistry 41, 4209–4217 (2002).

    Article  CAS  Google Scholar 

  9. Carlson, K.E., Choi, I., Gee, A., Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 36, 14897–14905 (1997).

    Article  CAS  Google Scholar 

  10. Tremblay, G.B., Tremblay, A., Labrie, F. & Giguere, V. Ligand-independent activation of the estrogen receptors alpha and beta by mutations of a conserved tyrosine can be abolished by antiestrogens. Cancer Res. 58, 877–881 (1998).

    CAS  PubMed  Google Scholar 

  11. Yudt, M.R. et al. Function of estrogen receptor tyrosine 537 in hormone binding, DNA binding, and transactivation. Biochemistry 38, 14146–14156 (1999).

    Article  CAS  Google Scholar 

  12. Lazennec, G., Ediger, T.R., Petz, L.N., Nardulli, A.M. & Katzenellenbogen, B.S. Mechanistic aspects of estrogen receptor activation probed with constitutively active estrogen receptors: correlations with DNA and coregulator interactions and receptor conformational changes. Mol. Endocrinol. 11, 1375–1386 (1997).

    Article  CAS  Google Scholar 

  13. Hsieh, R.W. et al. Identification of ligands with bicyclic scaffolds provides insights into mechanisms of estrogen receptor subtype selectivity. J. Biol. Chem. 281, 17909–17919 (2006).

    Article  CAS  Google Scholar 

  14. Nettles, K.W. et al. Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO Rep. 8, 563–568 (2007).

    Article  CAS  Google Scholar 

  15. Compton, D.R. et al. Pyrazolo[1,5-a]pyrimidines: estrogen receptor ligands possessing estrogen receptor beta antagonist activity. J. Med. Chem. 47, 5872–5893 (2004).

    Article  CAS  Google Scholar 

  16. De Angelis, M., Stossi, F., Carlson, K.A., Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Indazole estrogens: highly selective ligands for the estrogen receptor beta. J. Med. Chem. 48, 1132–1144 (2005).

    Article  CAS  Google Scholar 

  17. De Angelis, M., Stossi, F., Waibel, M., Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Isocoumarins as estrogen receptor beta selective ligands: Isomers of isoflavone phytoestrogens and their metabolites. Bioorg. Med. Chem. 13, 6529–6542 (2005).

    Article  CAS  Google Scholar 

  18. Kim, S.H. & Katzenellenbogen, J.A. Hormone-PAMAM dendrimer conjugates: polymer dynamics and tether structure affect ligand access to receptors. Angew. Chem. Int. Edn Engl. 45, 7243–7248 (2006).

    Article  CAS  Google Scholar 

  19. Muthyala, R.S., Sheng, S., Carlson, K.E., Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Bridged bicyclic cores containing a 1,1-diarylethylene motif are high-affinity subtype-selective ligands for the estrogen receptor. J. Med. Chem. 46, 1589–1602 (2003).

    Article  CAS  Google Scholar 

  20. Zhou, H.B., Comninos, J.S., Stossi, F., Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Synthesis and evaluation of estrogen receptor ligands with bridged oxabicyclic cores containing a diarylethylene motif: estrogen antagonists of unusual structure. J. Med. Chem. 48, 7261–7274 (2005).

    Article  CAS  Google Scholar 

  21. Zhou, H.B. et al. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Chem. Biol. 14, 659–669 (2007).

    Article  CAS  Google Scholar 

  22. Zhou, H.B. et al. Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains. J. Med. Chem. 50, 399–403 (2007).

    Article  CAS  Google Scholar 

  23. Zhang, J.X., Labaree, D.C. & Hochberg, R.B. Nonpolar and short side chain groups at C-11beta of estradiol result in antiestrogens. J. Med. Chem. 48, 1428–1447 (2005).

    Article  CAS  Google Scholar 

  24. Bennion, B.J. et al. PhIP carcinogenicity in breast cancer: computational and experimental evidence for competitive interactions with human estrogen receptor. Chem. Res. Toxicol. 18, 1528–1536 (2005).

    Article  CAS  Google Scholar 

  25. Nissen, R.M. & Yamamoto, K.R. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 14, 2314–2329 (2000).

    Article  CAS  Google Scholar 

  26. Nettles, K.W. et al. CBP is a dosage dependent regulator of NFκB suppression by the estrogen receptor. Mol. Endocrinol. 22, 263–272 (2008).

    Article  CAS  Google Scholar 

  27. Pike, A.C. et al. Structural insights into the mode of action of a pure antiestrogen. Structure 9, 145–153 (2001).

    Article  CAS  Google Scholar 

  28. Ekena, K., Weis, K.E., Katzenellenbogen, J.A. & Katzenellenbogen, B.S. Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding. J. Biol. Chem. 271, 20053–20059 (1996).

    Article  CAS  Google Scholar 

  29. Bruning, J.B. et al. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15, 1258–1271 (2007).

    Article  CAS  Google Scholar 

  30. Johnson, B.A. et al. Ligand-induced stabilization of PPARgamma monitored by NMR spectroscopy: implications for nuclear receptor activation. J. Mol. Biol. 298, 187–194 (2000).

    Article  CAS  Google Scholar 

  31. Stols, L. et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr. Purif. 25, 8–15 (2002).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We are very grateful to S. Rajan for her work on refinement and model building of the structures. We thank T. Tellinghiusen and J. Cleveland for comments on the manuscript. The authors also thank J. Chrzas, G. Sahle and J. Habel for data collection at APS SER-CAT, and C. Smith, G. Card and J. Habel for data collection at SSRL beamlines. Portions of data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID (or 22-BM) beamline at the Advanced Photon Source, Argonne National Laboratory. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. This work was supported by the US National Institutes of Health (1R21 NS056998-01 (K.W.N.); 5R01 CA89489 (G.L.G.); 5R37 DK15556 (J.A.K.); 5R01 CA18119 (B.S.K.); R01 HL61432 and R01 CA37799 (R.B.H.)), the Ludwig Fund for Cancer Research (G.L.G.) and US Department of Defense grant W81XWH-04-1-0791 (G.L.G.).

Author information

Authors and Affiliations

Authors

Contributions

K.W.N., J.B.B., J.N., S.K.S. and J.B.H. worked on crystallization. K.W.N., J.B.B. and Y.K. worked on X-ray data collection and data analysis. K.K., R.B.H., H.Z., J.A.K. and B.S.K. worked on generating reagents and chemical synthesis. G.G. performed the mammalian cell–based experiments. K.W.N., J.B.B., J.A.K., A.J. and G.L.G. designed and supervised experiments and wrote the paper.

Corresponding authors

Correspondence to Kendall W Nettles or Geoffrey L Greene.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 3269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nettles, K., Bruning, J., Gil, G. et al. NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat Chem Biol 4, 241–247 (2008). https://doi.org/10.1038/nchembio.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing