Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-18–stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production

Abstract

Interleukin-12 (IL-12) and IL-18 induce synergistic transcription of interferon γ (IFN-γ) that is T cell receptor (TCR)-independent, not inhibited by cyclosporin A and requires new protein synthesis. To characterize this pathway, we screened for genes that are induced in IL-12– and IL-18–treated T helper type 1 cells. GADD45β, which activates mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase kinase 4 (MEKK4), was induced by IL-18 and augmented by IL-12. GADD45β expression in naïve CD4+ T cells activated p38 MAPK and selectively increased cytokine-induced, but not TCR-induced, IFN-γ production. Kinase-inactive MEKK4 and inhibition of the p38 MAPK pathway both selectively inhibit cytokine-induced, but not TCR-induced, IFN-γ production. Thus, the synergy between IL-12 and IL-18 may involve GADD45β induction, which can maintain the MEKK4 and p38 MAPK activation that is necessary for cytokine-induced, but not TCR-induced, IFN-γ production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-18–dependent protein synthesis is required for cytokine-induced IFN-γ transcription.
Figure 2: IL-12 + IL-18 induces expression of GADD45β and GADD45γ mRNA in TH1 cells.
Figure 3: GADD45β selectively augments cytokine-induced, but not TCR-induced, IFN-γ.
Figure 4: GADD45β induces constitutive p38 MAPK phosphorylation in CD4+ T cells.
Figure 5: Dominant-negative MEKK4 selectively inhibits cytokine-induced, but not TCR-induced, IFN-γ.
Figure 6: Selective requirement of p38 MAPK for cytokine-induced, but not TCR-induced, IFN-γ production.
Figure 7: Model of IL-18 and IL-12 signaling for induction of IFN-γ

Similar content being viewed by others

References

  1. Bach, E. A., Aguet, M. & Schreiber, R. D. The IFNγ receptor: a paradigm for cytokine receptor signaling. Ann. Rev. Immunol. 15, 563–591 (1997).

    Article  CAS  Google Scholar 

  2. Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177, 1199–1204 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  4. Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Ann. Rev. Immunol. 12, 635–673 (1994).

    Article  CAS  Google Scholar 

  5. Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity 7, 571–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 29, 548–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Penix, L. A. et al. The proximal regulatory element of the interferon-γ promoter mediates selective expression in T cells. J. Biol. Chem. 271, 31964–31972 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Sweetser, M. T. et al. The roles of nuclear factor of activated T cells and ying-yang 1 in activation-induced expression of the interferon-γ promoter in T cells. J. Biol. Chem. 273, 34775–34783 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimoto, T. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells & B cells: synergism with IL-18 for IFN-γ production. J. Immunol. 161, 3400–3407 (1998).

    CAS  PubMed  Google Scholar 

  10. Jacobson, N. G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Murphy, K. M. et al. Signaling and transcription in T helper development. Ann. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  Google Scholar 

  12. Penix, L., Weaver, W. M., Pang, Y., Young, H. A. & Wilson, C. B. Two essential regulatory elements in the human interferon γ promoter confer activation specific expression in T cells. J. Exp. Med. 178, 1483–1496 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Aune, T. M., Penix, L. A., Rincon, M. R. & Flavell, R. A. Differential transcription directed by discrete γ interferon promoter elements in naive and memory (effector) CD4 T cells and CD8 T cells. Mol. Cell Biol. 17, 199–208 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sica, A. et al. The c-rel protooncogene product c-Rel but not NF-κ B binds to the intronic region of the human interferon-γ gene at a site related to an interferon-stimulable response element. Proc. Natl Acad. Sci. USA 89, 1740–1744 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campbell, P. M., Pimm, J., Ramassar, V. & Halloran, P. F. Identification of a calcium-inducible, cyclosporine sensitive element in the IFN-γ promoter that is a potential NFAT binding site. Transplantation 61, 933–939 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Sica, A. et al. Interaction of NF-κB and NFAT with the interferon-γ promoter. J. Biol. Chem. 272, 30412–30420 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J. 17, 2817–2829 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu, H. T. et al. Defective IL-12 production in mitogen–activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okamura, H. et al. A novel costimulatory factor for γ interferon induction found in the livers of mice causes endotoxic shock. Infect. Immunol. 63, 3966–3972 (1995).

    CAS  Google Scholar 

  21. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto, S. et al. Interleukin-18 activates NF-κB in murine T helper type 1 cells. Biochem. Biophys. Res. Commun. 234, 454–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kojima, H. et al. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem. Biophys. Res. Commun. 244, 183–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Barbulescu, K. et al. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-γ promoter in primary CD4+ T lymphocytes. J. Immunol. 160, 3642–3647 (1998).

    CAS  PubMed  Google Scholar 

  26. Tsuji-Takayama, K. et al. Interleukin-18 induces activation and association of p56(lck) and MAPK in a murine TH1 clone. Biochem. Biophys. Res. Commun. 237, 126-130 (1997).

  27. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, J., Gao, X., Li, S. & Cao, Z. Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc. Natl Acad. Sci. USA 94, 12829–12832 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  33. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  34. Vairapandi, M., Balliet, A. G., Fornace, A. J. Jr, Hoffman, B. & Liebermann, D. A. The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 12, 2579–2594 (1996).

    CAS  PubMed  Google Scholar 

  35. Newton, R. et al. Superinduction of COX-2 mRNA by cycloheximide and interleukin-1β involves increased transcription and correlates with increased NF-κB and JNK activation. FEBS Lett. 418, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  PubMed  Google Scholar 

  37. Tsuji-Takayama, K. et al. Interleukin-18 induces interferon-γ production through NF-κB and NFAT activation in murine T helper type 1 cells. Cell. Immunol. 196, 41–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ten, R. M., McKinstry, M. J., Trushin, S. A., Asin, S. & Paya, C. V. The signal transduction pathway of CD23 (Fc epsilon RIIb) targets I κ B kinase. J. Immunol. 163, 3851–3857 (1999).

    CAS  PubMed  Google Scholar 

  39. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Rincon, M. & Flavell, R. A. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol. Cell Biol. 17, 1522–1534 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ciccarone, V. C., Chrivia, J., Hardy, K. J. & Young, H. A. Identification of enhancer-like elements in human IFN-γ genomic DNA. J. Immunol. 144, 725–730 (1990).

    CAS  PubMed  Google Scholar 

  43. Barbulescu, K., Meyer, zum Buschenfelde K. H. & Neurath, M. F. Constitutive and inducible protein/DNA interactions of the interferon-γ promoter in vivo in CD45RA and CD45R0 T helper subsets Eur. J. Immunol. 27, 1098–1107 (1997). [Erratum in Eur. J. Immunol. 27,1830 (1997).]

    Article  CAS  PubMed  Google Scholar 

  44. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Ye, J., Cippitelli, M., Dorman, L., Ortaldo, J. R. & Young, H. A. The nuclear factor YY1 suppresses the human γ interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element. Mol. Cell Biol. 16, 4744–4753 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Takeda, K. et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Ahn, H. J. et al. A mechanism underlying synergy between IL-12 and IFN-γ-inducing factor in enhanced production of IFN-γ. J. Immunol. 159, 2125–2131 (1997).

    CAS  PubMed  Google Scholar 

  51. Chang, J. T., Segal, B. M., Nakanishi, K., Okamura, H. & Shevach, E. M. The costimulatory effect of IL-18 on the induction of antigen-specific IFN-γ production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor β2 subunit. Eur. J. Immunol. 30, 1113–1119 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, S. M. & Kaplan, M. H. The p38 mitogen-activated protein kinase is required for IL-12-induced IFN-γ expression. J. Immunol. 165, 1374–1380 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. DeSilva, D. R., Jones, E. A., Feeser, W. S., Manos, E. J. & Scherle, P. A. The p38 mitogen-activated protein kinase pathway in activated and anergic Th1 cells. Cell. Immunol. 180, 116–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Merritt, C. et al. Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol. Cell Biol. 20, 936–946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szabo, S. J., Dighe, A. S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-12R β 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, D. et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J. Exp. Med. 188, 1485–1492 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Andre-Schmutz, I., Hindelang, C., Benoist, C. & Mathis, D. Cellular and molecular changes accompanying the progression from insulitis to diabetes. Eur. J. Immunol. 29, 245–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Ohara, J. and Paul, W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315, 333–336 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P. & Unanue, E. R. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-γ. J. Immunol. 152, 1883–1887 (1994).

    CAS  PubMed  Google Scholar 

  61. Wittwer, C. T. et al. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22, 176–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Wittwer, C. T., Herrmann, M. G., Moss, A. A. & Rasmussen, R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–131 (1900).

    Article  Google Scholar 

  63. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Szabo, S. J., Gold, J. S., Murphy, T. L. & Murphy, K. M. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells: roles for NF-Y and NF-ATc Mol. Cell Biol. 13, 4793–4805 (1993). [Erratum in Mol. Cell Biol. 13, 5928 (1993).]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl Acad. Sci. USA 96, 3888–3893 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guler, M. L., Jacobson, N. G., Gubler, U. & Murphy, K. M. T cell genetic background determines maintenance of IL-12 signaling: effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J. Immunol. 159, 1767–1774 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. D. Farrar for careful reading of the manuscript. Supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhu, H., Murphy, T. et al. IL-18–stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nat Immunol 2, 157–164 (2001). https://doi.org/10.1038/84264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing