Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemokines and disease

Abstract

We examine here several diseases that are associated with inappropriate activation of the chemokine network. Detailed comment has been restricted to pathological states for which there are compelling data either from clinical observations or animal models. These include cardiovascular disease, allergic inflammatory disease, transplantation, neuroinflammation, cancer and HIV-associated disease. Discussion focuses on therapeutic directions in which the rapidly evolving chemokine field appears to be headed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokines involved in allograft rejection.
Figure 2: Chemokines and atherosclerosis.

References

  1. Thelen, M. Dancing to the tune of chemokines. Nature Immunol. 2, 129–134 (2000).

    Article  CAS  Google Scholar 

  2. Rollins, B. J. Chemokines. Blood 90, 909–928 (1997).

    CAS  PubMed  Google Scholar 

  3. Katoh, S. et al. Elevated chemokine levels in bronchoalveolar lavage fluid of patients with esoinophilic pneumonia. J. Allergy Clin. Immunol. 106, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Butterfield, R. J. et al. Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis. Am. J. Pathol. 157, 637–645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ransohoff, R. M. Chemokines and chemokine receptors in model neurological pathologies: molecular and immunocytochemical approaches. Meth. Enzymol. 287, 319–348 (1997).

    Article  CAS  Google Scholar 

  6. Karpus, W. J. & Kennedy, K. J. MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62, 681–687 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J. & Ransohoff, R. M. Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain. Behav. Immunol. 9, 315–330 (1995).

    Article  CAS  Google Scholar 

  8. Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  PubMed  Google Scholar 

  9. Godiska, R., Chantry, D., Dietsch, G. N. & Gray, P. W. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58, 167–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Ransohoff, R. M. et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 7, 592–600 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Tran, E. H., Kuziel, W. A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur J. Immunol. 30, 1410–1415 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J. Immunol. 30, 2372–2377 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Fife, B. T., Huffnagle, G. B., Kuziel, W. A. & Karpus, W. J. CC Chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 18, 899–906 (2000).

    Article  Google Scholar 

  14. Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. & Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Miyagishi, R., Kikuchi, S., Fukazawa, T. & Tashiro, K. Macrophage inflammatory protein-1 α in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J. Neurol. Sci. 129, 223–227 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. McManus, C. et al. MCP-1, MCP-2 and MCP-3 expressions in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol. 86, 20–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Simpson, J. et al. Expression of the β-chemokine receptors CCR2, CCR3, and CCR5 in multiple sclerosis central nervous system tissue. J. Neuroimmunol. 108, 192–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Balashov, K.E., Rottman, J.B., Weiner, H.L. & Hancock, W. W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 96, 6873–6878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sorensen, T. L. et al. Expressions of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103, 807–815 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iarlori, C. et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-β-1b. J. Neuroimmunol. 10, 100–107 (2000).

    Article  Google Scholar 

  23. Bennetts, B. H., Teutsch, S. M., Buhler, M. M., Heard, R. N. & Stewart, G. J. The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum. Immunol. 58, 52–59 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Barcellos, L. F. et al. CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 51, 281–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hancock, W. W., Gao, W., Faia, K.L. & Csizmadia, V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol. 12, 511–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Melter, M., McMahon, G., Fang, J., Ganz, P. & Briscoe, D. M. Current understanding of chemokine involvement in allograft transplantation. Pediatr. Transplant. 3, 10–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Yun, J. J. et al. Early and late chemokine production correlates with cellular recruitment in cardiac allograft vasculopathy. Transplantation 69, 2515–2524 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Belperio, J. A. et al. The role of the CC chemokine, Rantes, in acute lung allograft rejection. J. Immunol. 461, 72 (2000).

    Google Scholar 

  29. Kapoor, A. et al. Intragraft expression of chemokine gene occurs early during acute rejection of allogeneic cardiac grafts. Transpl. Proc. 32, 793–795 (2000).

    Article  CAS  Google Scholar 

  30. Watarai, Y. et al. Intraallograft chemokine RNA and protein during rejection of MHC-matched/multiple minor histocompatibility-disparate skin grats. J. Immunol. 164, 6027–6033 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kapoor, A. et al. Early expression of interferon-γ inducible protein 10 and monokine induced by interferon-γ in cardiac allografts is mediated by CD8+ T cells. Transplantation 69, 1147–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kondo, T. et al. Early increased chemokine expression and prodcution in murine allogeneic skin grafts is mediated by natural killer cells. Tranplantation 69, 969–977 (2000).

  33. Gao, W. et al. Targeting of the chemokine receptor, CCR1, suppresses development of acute and chronic cardiac allograft rejection. J. Clin. Invest. 105, 35–44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hancock, W.W. et al. Requirements of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1520 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells actovated by influenza virus and CD40L drive a potent TH1 polarization. Nature Immunol. 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  36. Shimizu, K., Schonbeck, U., Mach, F., Libby, P. & Mitchell, R. N. Host CD40 ligand deficiency induces long-term allograph survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J. Immunol. 165, 3506–3518 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tellides, G. et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature 403, 207–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Blanpain, C. et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood 96, 1638–1645 (2000).

    CAS  PubMed  Google Scholar 

  42. Palacios, E. et al. Parallel evolution of CCR5-null phenotypes in humans and in a natural host of simian immunodeficiency virus. Curr. Biol. 8, 943–946 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Petrek, M. et al. CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 162, 1000–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Tuttle, D. L., Harrison, J. K., Andres, C., Sleasman, J. W. & Goodenow, M. M. Expressions of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J. Virol. 72, 4962–4969 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baroudy, B. M. A Small Molecule Antagonist of CCR5 that Effectively Inhibits HIV-1 Potential as a Novel Antiretroviral Agent. 7th Conference on Retroviruses and Opportunistic Infections. Abstr. S17 (2000).

  46. Lamkhioued, B. et al. Monocyte chemoattractant protein (MCP)-4 expressions in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am. J. Respir. Crit. Care Med. 162, 723–732 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sekiya, T. et al. Inducible expresion of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J. Immunol. 165, 2205–2213 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Ying, S. et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J. Immunol. 163, 6321–6329 (1999).

    CAS  PubMed  Google Scholar 

  49. Gonzalo, J. A. et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med. 188, 157–167 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elsner, J. et al. The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J. Immunol. 27, 2892–2898 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Dabbagh, K. et al. Local blockage of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol. 165, 3418–3422 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med. 19, 265–274 (2000).

    Article  Google Scholar 

  53. Zingoni, A. et al. The chemokine receptor CCR8 is preferentially expressed in TH1 but not TH2 cells. J. Immunol. 161, 547–551 (1998).

    CAS  PubMed  Google Scholar 

  54. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  PubMed  Google Scholar 

  55. Gong, J. H., Ratkay, L. G., Waterfield, J. D. & Clark-Lewis, I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med. 186, 131–137 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ogata, H., Takeya, M., Yoshimura, T., Takagi, K. & Takahashi, K. The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J. Pathol. 182, 106–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Plater-Zyberk, C., Hoogewerf, A. J., Proudfoot, A. E., Power. C. A. & Wells, T. N. Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol. Lett. 57, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. De Benedetti, F. et al. Interleukin 8 and monocyte chemoattractant protein-1 in patients with juvenile rheumatoid arthritis. Relation to onset types, disease activity, and synovial fluid leukocytes. J. Rheumatol. 26, 425–431 (1999).

    CAS  PubMed  Google Scholar 

  59. Al-Mughales, J., Blyth, T. H., Hunter, J. A. & Wilkinson, P. C. The chemoattractant activity of rheumatoid synovial fluid for human lymphocytes is due to multiple cytokines. Clin. Exp. Immunol. 106, 230–236 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buckley, C. D. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-β 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol. 165, 3423–3429 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Konig, A., Krenn, V., Toksoy, A., Gerhard, N. & Gillitzer, R. Mig, GROα and RANTES messenger RNA expression in lining layer, infiltrates and different leucocyte populations of synovial tissue from patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Virchows Arch. 436, 449–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor α blockade in patients with rheumatoid arthritis. Arthritis Rheum. 43, 38–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Nanki, T. & Lipskym P. E. Cytokine, activation marker, and chemokine receptor expression by individual CD4+ memory T cells in rheumatoid arthritis synovium. Arthritis Res. 2, 415–423 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wedderburn, L. R., Robinson, N., Patel, A., Varsani, H. & Woo, P. Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum. 43, 765–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Qin, S. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101, 746–754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gomez-Reino, J. J. et al. Association of rheumatoid arthritis with a functional chemokine receptor, CCR5. Arthritis Rheum. 42, 989–992 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Garred, P. et al. CC chemokine receptor 5 polymorphism in rheumatoid arthritis. J. Rheumatol. 25, 1462–1465 (1998).

    CAS  PubMed  Google Scholar 

  68. Virchow, R. Die krankhaften Geschwulste. Dreiβig Vorlesungen, gehalten während des Wintersemesters 1862–1863 an der Universität zu Berlin (Verlag von August Hirschwald, Berlin, 1863).

    Google Scholar 

  69. Bashford, E. F. in Scientific Reports on the Investigations of the ICRF (eds Bashford, E. F., Murray, J. A. & Cramer, W.) (ICRF, London, 1905).

    Google Scholar 

  70. Russell, B. R. G. The nature of resistance to the inoculation of cancer. Sci. Rep. ICRF 3, 341–358 (1908).

    Google Scholar 

  71. Carrel, A. Growth-promoting function of leukocytes. J. Exp. Med. 36, 385–391 (1922).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bottazzi, B. et al. Regulation of the macrophage content of neoplasms by chemoattractant. Science 220, 210–212 (1983).

    Article  CAS  PubMed  Google Scholar 

  73. Bottazzi, B. et al. Tumor-derived chemotactic factor(s) from human ovarian carcinoma: evidence for a role in the regulation of macrophage content of neoplastic tissues. Int. J. Cancer 36, 167–173 (1985).

    Article  CAS  PubMed  Google Scholar 

  74. Negus, R. P., Stamp, G. W., Hadley, J. & Balkwill, F. R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol. 150, 1723–1734 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Walter, S., Bottazzi, B., Govoni, D., Colotta, F. & Mantovani, A. Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. Int. J. Cancer 49, 431–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  77. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  78. Kleine-Lowinski, K., Gillitzer, R., Kuhne-Heid, R. & Rosl, F. Monocyte-chemo-attractant-protein-1 (MCP-1)-gene expression in cervical intra-epithelial neoplasias and cervical carcinomas. Int. J. Cancer 82, 6–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Rollins, B. J. & Sunday, M. E. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol. Cell. Biol. 11, 3125–3131 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bottazzi, B., Walter, S., Govoni, D., Colotta, F. & Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol. 148, 1280–1285 (1992).

    CAS  PubMed  Google Scholar 

  81. Manome, Y. et al. Monocyte chemoattractant protein-1 (MCP-1) gene transduction: an effective tumor vaccine strategy for non-intracranial tumors. Cancer Immunol. Immunother. 41, 227–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Mule, J. J. et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum. Gene Ther. 7, 1545–1553 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Laning, J., Kawasaki, H., Tanaka, E., Luo, Y. & Dorf, M. E. Inhibition of in vivo tumor growth by the β chemokine, TCA3. J. Immunol. 153, 4625–4635 (1994).

    CAS  PubMed  Google Scholar 

  84. Fushimi, T., Kojima, A., Moore, M. A. & Crystal, R. G. Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest. 105, 1383–1393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vicari, A. P. et al. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J. Immunol. 165, 1992–2000 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Luster, A. D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med. 178, 1057–1065 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Dilloo, D. et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nature Med. 2, 1090–1095 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Strieter, R. M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348–27357 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Arenberg, D. A. et al. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Clin. Invest. 97, 2792–2802 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith, D.R., et al. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J. Exp. Med. 179, 1409–1415 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Richmond, A. et al. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to β-thromboglobulin. EMBO J. 7, 2025–2033 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takamori, H., Oades, Z. G., Hoch, O. C., Burger, M. & Schraufstatter, I. U. Autocrine growth effect of IL-8 and GROα on a human pancreatic cancer cell line, Capan-1. Pancreas 21, 52–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, J. et al. Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J. Interferon Cytok. Res. 16, 53–60 (1996).

    Article  CAS  Google Scholar 

  94. Jordan, N. J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest. 104, 1061–1069 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murdoch, C., Monk, P. N. & Finn, A. Functional expression of chemokine receptor CXCR4 on human epithelial cells. Immunology 98, 36–41 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oyamada, H. et al. CCR3 mRNA expression in bronchial epithelial cells and various cells in allergic inflammation. Int. Arch. Allergy Immunol. 120, S45–S47 (1999).

    Article  Google Scholar 

  97. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Kol, A. & Libby, P. Molecular mediators of arterial inflammation: a role for microbial products? Am. Heart J. 138, 450–452 (1999).

    Article  Google Scholar 

  99. Streblow, D. N. et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Molestina, R. E., Dean, D., Miller, R. D., Ramirez, J. A. & Summersgill, J. T. Characterization of a strain of Chlamydia pneumoniae isolated from a coronary atheroma by analysis of the omp1 gene and biological activity in human endothelial cells. Infect. Immun. 66, 1370–1376 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boisvert, W. A., Curtiss, L. K. & Terkeltaub, R. A. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol. Res. 21, 129–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Abi-Younes, S. et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ. Res. 86, 131–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest. 104, 1041–1050 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haque, N. S. et al. CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells. Circulation 102, 786–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773–778 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Dawson, T. C., Kuziel, W. A., Osahar, T. A. & Maeda, N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143, 205–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Bush, E. et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 36, 360–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, X., Paulsson, G., Stemme, S. & Hansson, G. K. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest. 101, 1717–1725 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nelken, N. A., Coughlin, S. R., Gordon, D. & Wilcox, J. N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88, 1121–1127 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yla-Herttuala, S. et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl Acad. Sci. USA 88, 5252–5256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilcox, J. N., Nelken, N. A., Coughlin, S. R., Gordon, D. & Schall, T. J. Local expression of inflammatory cytokines in human atherosclerotic plaques. J. Atheroscler. Thromb. 1, S10–S13 (1994).

    Article  PubMed  Google Scholar 

  114. Haley, K. J. et al. Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 102, 2185–2189 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Schecter, A. D. et al. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J. Biol. Chem. 272, 28568–28573 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Ortego, M. et al. Atorvastatin reduces NF-κB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 147, 253–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Romano, M. et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab. Invest. 80, 1095–1100 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Egashira, K. et al. Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis. FASEB J 14, 1974–1978 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Ransohoff for sharing his insights into MS and D. Bota for editorial assistance and graphics. Supported by grants from the National Institutes of Health and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig Gerard or Barrett J. Rollins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerard, C., Rollins, B. Chemokines and disease. Nat Immunol 2, 108–115 (2001). https://doi.org/10.1038/84209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/84209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing