Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A multimodal cortical network for the detection of changes in the sensory environment

Abstract

Sensory stimuli undergoing sudden changes draw attention and preferentially enter our awareness. We used event-related functional magnetic-resonance imaging (fMRI) to identify brain regions responsive to changes in visual, auditory and tactile stimuli. Unimodally responsive areas included visual, auditory and somatosensory association cortex. Multimodally responsive areas comprised a right-lateralized network including the temporoparietal junction, inferior frontal gyrus, insula and left cingulate and supplementary motor areas. These results reveal a distributed, multimodal network for involuntary attention to events in the sensory environment. This network contains areas thought to underlie the P300 event-related potential and closely corresponds to the set of cortical regions damaged in patients with hemineglect syndromes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excerpt of stimulus-presentation protocol.
Figure 2: Surface rendering of brain regions activated by transitions of the visual, auditory and tactile stimuli.
Figure 3: Responses to visual, auditory and tactile transitions.
Figure 4: Multimodally responsive brain regions.
Figure 5: Responses of the right TPJ to each direction of transition in each modality.

Similar content being viewed by others

References

  1. Vallar, G. Spatial hemineglect in humans. Trends Cogn. Sci. 2, 87–97 (1998).

    Article  CAS  Google Scholar 

  2. Halligan, P. W. & Marshall, J. C. Neglect of awareness. Conscious. Cogn. 7, 356–380 (1998).

    Article  CAS  Google Scholar 

  3. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article  Google Scholar 

  4. Pollmann, S., Wiggins, C. J., Norris, D. G., von Cramon, D. Y. & Schubert, T. Use of short intertrial intervals in single-trial experiments: a 3T fMRI-study. Neuroimage 8, 327–339 (1998).

    Article  CAS  Google Scholar 

  5. Buckner, R. L. Event-related fMRI and the hemodynamic response. Hum. Brain Mapp. 6, 373–377 (1998).

    Article  CAS  Google Scholar 

  6. Aguirre, G. K., Zarahn, E. & D'Esposito, M. The variability of human, BOLD hemodynamic responses. Neuroimage 8, 360–369 (1998).

    Article  CAS  Google Scholar 

  7. Sergent, J., Ohta, S. & MacDonald, B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  8. Kim, Y. H. et al. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage 9, 269–277 (1999).

    Article  CAS  Google Scholar 

  9. Robinson, C. J. & Burton, H. Somatotopographic organization in the second somatosensory area of M. fascicularis. J. Comp. Neurol. 192, 43–67 (1980).

    Article  CAS  Google Scholar 

  10. Dong, W. K. et al. Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res. 484, 314–324 (1989).

    Article  CAS  Google Scholar 

  11. Maldjian, J. A. et al. Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study. Brain Res. 824, 291–295 (1999).

    Article  CAS  Google Scholar 

  12. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

  13. Kawashima, R., O'Sullivan, B. T. & Roland, P. E. Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the ‘mind's eye’. Proc. Natl. Acad. Sci. USA 92, 5969–5972 (1995).

    Article  CAS  Google Scholar 

  14. Alain, C., Woods, D. L. & Knight, R. T. A distributed cortical network for auditory sensory memory in humans. Brain Res. 812, 23–37 (1998).

    Article  CAS  Google Scholar 

  15. Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998).

    Article  CAS  Google Scholar 

  16. Ro, T., Cohen, A., Ivry, R. B. & Rafal, R. D. Response channel activation and the temporoparietal junction. Brain Cogn. 37, 461–476 (1998).

    Article  CAS  Google Scholar 

  17. Friedrich, F. J., Egly, R., Rafal, R. D. & Beck, D. Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology 12, 193–207 (1998).

    Article  CAS  Google Scholar 

  18. Ikeda, A. et al. Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain 122, 915–931 (1999).

    Article  Google Scholar 

  19. Coull, J. T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog. Neurobiol. 55, 343–361 (1998).

    Article  CAS  Google Scholar 

  20. Yamaguchi, S. & Knight, R. T. P300 generation by novel somatosensory stimuli. Electroencephalogr. Clin. Neurophysiol. 78, 50–55 (1991).

    Article  CAS  Google Scholar 

  21. Swick, D. & Knight, R. T. in The Attentive Brain (ed. Parasuraman, R.) 144–162 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  22. Knight, R. T., Scabini, D., Woods, D. L. & Clayworth, C. C. Contributions of temporal-parietal junction to the human auditory P3. Brain Res. 502, 109–116 (1989).

    Article  CAS  Google Scholar 

  23. Yamaguchi, S. & Knight, R. T. Anterior and posterior association cortex contributions to the somatosensory P300. J. Neurosci. 11, 2039–2054 (1991).

    Article  CAS  Google Scholar 

  24. Knight, R. T. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol. 59, 9–20 (1984).

    Article  CAS  Google Scholar 

  25. Opitz, B., Mecklinger, A., Friederici, A. D. & von Cramon, D. Y. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb. Cortex 9, 379–391 (1999).

    Article  CAS  Google Scholar 

  26. Knight, R. T. & Nakada, T. Cortico-limbic circuits and novelty: a review of EEG and blood flow data. Rev. Neurosci. 9, 57–70 (1998).

    Article  CAS  Google Scholar 

  27. Tulving, E., Markowitsch, H. J., Kapur, S., Habib, R. & Houle, S. Novelty encoding networks in the human brain: positron emission tomography data. Neuroreport 5, 2525–2528 (1994).

    Article  CAS  Google Scholar 

  28. Katayama, J. & Polich, J. Stimulus context determines P3a and P3b. Psychophysiology 35, 23–33 (1998).

    Article  CAS  Google Scholar 

  29. Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  CAS  Google Scholar 

  30. Glover, G. H. & Lee, A. T. Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn. Reson. Med. 33, 624–635 (1995).

    Article  CAS  Google Scholar 

  31. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

Download references

Acknowledgements

This study was supported by grants to K.D.D. from the Whitehall Foundation and the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen D. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downar, J., Crawley, A., Mikulis, D. et al. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3, 277–283 (2000). https://doi.org/10.1038/72991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing