Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM Kinase II

Abstract

Calcium/calmodulin-dependent serine/threonine kinase type II (CaMKII) is one of the most abundant proteins in the mammalian brain, where it is thought to regulate synaptic plasticity and other processes1,2,3. Activation of the multisubunit kinase4 by calcium is effectively cooperative and can persist long after transient calcium rises1,5,6. Despite extensive biochemical characterization of CaMKII and identification of numerous in vitro kinase targets1, little is known about its function in vivo. Here we report that unc-43 encodes the only Caenorhabditis elegans CaMKII. A gain-of-function unc-43 mutation reduces locomotory activity, alters excitation of three muscle types and lengthens the period of the motor output of a behavioural clock. Null unc-43 mutations cause phenotypes generally opposite to those of the gain-of-function mutation. Mutations in the unc-103 potassium channel gene suppress a gain-of-function phenotype of unc-43 in one tissue without affecting other tissues; thus, UNC-103 may be a tissue-specific target of CaMKII in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: unc-43 encodes CaMKII.
Figure 2: UNC-43 is expressed in the nervous system.
Figure 3: unc-43 regulates a behavioural clock.
Figure 4: Egg-laying and enteric muscle defects in unc-43 mutants.
Figure 5: unc-103 interacts genetically with unc-43.

Similar content being viewed by others

References

  1. Schulman,H. & Hanson,P. I. Multifunctional Ca2+/calmodulin-dependent protein kinase. Neurochem. Res. 18, 65–77.

  2. Silva,A. J., Stevens,C. F., Tonegawa,S. & Wang,Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201–206 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Silva,A. J., Paylor,R., Wehner,J. M. & Tonegawa,S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Kanaseki,T., Ikeuchi,Y., Sugiura,H. & Yamauchi,T. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J. Cell Biol. 115, 1049–1060 (1991).

    Article  CAS  Google Scholar 

  5. De Koninck,P. & Schulman,H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Hanson,P. I., Meyer,T., Stryer,L. & Schulman,H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994).

    Article  CAS  Google Scholar 

  7. Schulman,H. The multifunctional Ca2+/calmodulin-dependent protein kinases. Curr. Opin. Cell Biol. 5, 247–253 (1993).

    Article  CAS  Google Scholar 

  8. Park,E. C. & Horvitz,H. R. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics 113, 821–852 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reiner,D. J., Weinshenker,D. & Thomas,J. H. Analysis of dominant mutations affecting muscle excitation in Caenorhabiditis elegans. Genetics 113, 821–852 (1986).

    Google Scholar 

  10. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2108 (1998).

    Article  ADS  Google Scholar 

  11. Brocke,L., Srinivasan,M. & Schulman,H. Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J. Neurosci. 15, 6797–6808 (1995).

    Article  CAS  Google Scholar 

  12. Griffith,L. C. & Greenspan,R. J. The diversity of calcium/calmodulin-dependent protein kinase II isoforms in Drosophila is generated by alternative splicing of a single gene. J. Neurochem. 61, 1534–1537 (1993).

    Article  CAS  Google Scholar 

  13. GutaRoy,B. & Griffith,L. C. Functional heterogeneity of alternatively spliced isoforms of Drosophila Ca2+/calmodulin-dependent protein kinase II. J. Neurochem. 66, 1282–1288 (1996).

    Article  Google Scholar 

  14. Cho,K. O. et al. The alpha subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved in Drosophila. Neuron 7, 439–450 (1991).

    Article  CAS  Google Scholar 

  15. White,J. G., Southgate,E., Thomson,J. N. & Brenner,S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Liu,D. W. & Thomas,J. H. Regulation of a periodic motor program in C. elegans. J. Neurosci. 14, 1953–1962 (1994).

    Article  CAS  Google Scholar 

  17. Thomas,J. H. Genetic analysis of defecation in Caenorhabiditis elegans. Genetics 124, 855–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McIntire,S. L., Jorgensen,E., Kaplan,J. & Horvitz,H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–337 (1993).

    Article  ADS  CAS  Google Scholar 

  19. McIntire,S. L., Jorgensen,E. & Horvitz,H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Dal Santo,P., Logan,M. A., Chisholm,A. D. & Jorgensen,E. The inositol trisphosphate receptor regulates a 50 second behavioral rhythm in C. elegans. Cell 98, 757–767 (1999).

    Article  CAS  Google Scholar 

  21. Hedgecock,E. M., Culotti,J. G. & Hall,D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–84 (1990).

    Article  CAS  Google Scholar 

  22. Komatsu,H., Mori,I., Rhee,J. S., Akaike,N. & Ohshima,Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17, 707–718 (1996).

    Article  CAS  Google Scholar 

  23. Warmke,J. W. & Ganetzky,B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl Acad. Sci. USA 91, 3438–3442 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Curran,M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    Article  CAS  Google Scholar 

  25. Sanguinetti,M. C., Jiang,C., Curran,M. E. & Keating,M. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  Google Scholar 

  26. Griffith,L. C., Wang,J., Zhong,Y., Wu,C. F. & Greenspan,R. J. Calcium/calcomodulin-dependent protein kinase II and potassium channel subunit eag similarly affect plasticity in Drosophila. Proc. Natl Acad. Sci. USA 91, 10044–10048 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Mayford,M., Wang,J., Kandel,E. R. & O'Dell,T. J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).

    Article  CAS  Google Scholar 

  28. Bach,M. E., Hawkins,R. D., Osman,M., Kandel,E. R. & Mayford,M. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81, 905–915 (1995).

    Article  CAS  Google Scholar 

  29. Rongo,C. & Kaplan,J. M. CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402, 195–199 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Miller,D. M. & Shakes,D. C. Immunofluorescence microscopy. Methods Cell Biol. 48, 365–394 (1995).

    Article  CAS  Google Scholar 

  31. Johnstone,D. B., Wei,A., Butler,A., Salkoff,L. & Thomas,J. H. Behavioral defects in C. elegans egl-36 mutants result from potassium channels shifted in voltage-dependence of activation. Neuron 19, 151–164 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Mori for strains and discussion of tax-4; T. Inoue for daf-14 cloning; J. Knapp for isolating sa402; K. Iwasaki, D. Johnstone, D. Liu, E. Malone, D. Weinshenker and the rest of our lab for discussions; G. Garriga and D. Johnstone for reading the manuscript; L. Griffith for 4A11 antibody; Y. Kohara for cDNA clones; A. Coulson for cosmid clones; H. R. Horvitz for unc-43 mutants; and B. Meyer for hospitality during the writing of this manuscript. Some strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH Center for Research Resources (NCRR). The work was funded by an NIH grant to J.H.T., and E.M.N. was supported by the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, D., Newton, E., Tian, H. et al. Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM Kinase II. Nature 402, 199–203 (1999). https://doi.org/10.1038/46072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing