This huge eruption slowed sea-level rise and ocean warming well into the following century.
Abstract
We have analysed a suite of 12 state-of-the-art climate models and show that ocean warming and sea-level rise in the twentieth century were substantially reduced by the colossal eruption in 1883 of the volcano Krakatoa in the Sunda strait, Indonesia. Volcanically induced cooling of the ocean surface penetrated into deeper layers, where it persisted for decades after the event. This remarkable effect on oceanic thermal structure is longer lasting than has previously been suspected1 and is sufficient to offset a large fraction of ocean warming and sea-level rise caused by anthropogenic influences.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Church, J. A., White, N. J. & Arblaster, J. M. Nature 438, 74–77 (2005).
Levitus, S., Antonov, J. I. & Boyer, T. P. Geophys. Res. Lett. 32, L02604 doi:10.1029/2004GL021592 (2005).
AchutaRao, K. M. et al. J. Geophys. Res. (in the press).
Delworth, T. L., Ramaswamy, V. & Stenchikov, G. L. Geophys. Res. Lett. 32, L24709 (2005).
Robock, A. Rev. Geophys. 38, 191–219 (2000).
Barnett, T. P. et al. Science 309, 284–287 (2005).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
(DOC 70 kb)
Rights and permissions
About this article
Cite this article
Gleckler, P., Wigley, T., Santer, B. et al. Krakatoa's signature persists in the ocean. Nature 439, 675 (2006). https://doi.org/10.1038/439675a
Published:
Issue Date:
DOI: https://doi.org/10.1038/439675a