Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid

Abstract

Endophilin I is a presynaptic protein of unknown function that binds to dynamin, a GTPase that is implicated in endocytosis and recycling of synaptic vesicles. Here we show that endophilin I is essential for the formation of synaptic-like microvesicles (SLMVs) from the plasma membrane. Endophilin I exhibits lysophosphatidic acid acyl transferase (LPAAT) activity, and endophilin-I-mediated SLMV formation requires the transfer of the unsaturated fatty acid arachidonate to lysophosphatidic acid, converting it to phosphatidic acid. A deletion mutant lacking the SH3 domain through which endophilin I interacts with dynamin still exhibits LPAAT activity but no longer mediates SLMV formation. These results indicate that endophilin I may induce negative membrane curvature by converting an inverted-cone-shaped lipid to a cone-shaped lipid in the cytoplasmic leaflet of the bilayer. We propose that, through this action, endophilin I works with dynamin to mediate synaptic vesicle invagination from the plasma membrane and fission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endophilin I is rate-limiting for SLMV biogenesis.
Figure 2: Identification of purified bovine brain LPAAT as endophilin I.
Figure 3: Endophilin I exhibits LPAAT activity.
Figure 4: Endophilin I binds to fatty acyl-CoA and LPA.
Figure 5: Effects of lysophospholipids and fatty acyl-CoA on endophilin-I-mediated SLMV formation.
Figure 6: Effects of PLA2 and the PLA2 inhibitor MAFP on endophilin-I-mediated SLMV formation.
Figure 7: Endophilin I lacking its SH3 domain (del-endophilin I) still possesses LPAAT activity but does not promote SLMV biogenesis.
Figure 8: Role of endophilin-I-mediated conversion of LPA to phosphatidic acid (PA) in one of the steps of synaptic vesicle formation (fission).

Similar content being viewed by others

References

  1. Matsuoka,K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Spang,A., Matsuoka,K., Hamamoto,S., Schekman,R. & Orci,L. Coatomer, ARF1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bremser,M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Takei,K., McPherson,P. S., Schmid,S. L. & De Camilli,P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374, 186–190 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Warnock,D. E. & Schmid,S. L. Dynamin GTPase, a force-generating molecular switch. BioEssays 18, 885–893 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Cremona,O. & De Camilli,P. Synaptic vesicle endocytosis. Curr. Opin Neurobiol. 7, 323–330 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Schmid,S. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Schmid,S. L., McNiven,M. A. & De Camilli,P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hirst,J. & Robinson,M. S. Clathrin and adaptors. Biochim. Biophys. Acta 1404, 173–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Vallee,R. B. & Okamoto,P. M. The regulation of endocytosis: identifying dynamin's binding partners. Trends Cell Biol. 5, 43–47 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Hinshaw, J E. & Schmid,S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  ADS  Google Scholar 

  12. Sweitzer,S. M. & Hinshaw,J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Takei,K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Stowell,M. H. B., Marks,B., Wigge,P. & McMahon,H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Roos,J. & Kelly,R. B. Is dynamin really a ‘pinchase’? Trends Cell Biol. 7, 257–259 (1997).

    Article  CAS  Google Scholar 

  16. Sever,S., Muhlberg,A. B. & Schmid,S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kirchhausen,T. Boa constrictor or rattlesnake? Nature 398, 470–471 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Sparks,A. B., Hoffmann,N. G., McConnell,S. J., Fowlkes,D. M. & Kay,B. K. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Nature Biotechnol. 14, 741–744 (1996).

    Article  CAS  Google Scholar 

  19. Lipowsky,R. Domain-induced budding of fluid membranes. Biophys. J. 64, 1133–1138 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chernomordik,L., Kozlov,M. M. & Zimmerberg,J. Lipids in biological membrane fusion. J. Membrane Biol. 146, 1–14 (1995).

    Article  CAS  Google Scholar 

  21. Düzgünes,N. in Trafficking of Intracellular Membranes (eds Pedroso de Lima, M. C., Düzgünes, N. & Hoekstra, D.) 97–129 (Springer, Heidelberg, 1995).

    Book  Google Scholar 

  22. Chernomordik,L. V., Leikina,E., Frolov,V. Bronk,P. & Zimmerberg,J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136, 81–93 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White,J. M. Membrane fusion. Science 258, 917–924 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kozlov,M. M. & Chernomordik,L. V. A mechanism of protein-mediated fusion: coupling between refolding of the Influenza hemagglutinin and lipid rearrangements. Biophys. J. 75, 1384–1396 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt,A. & Huttner,W. B. Biogenesis of synaptic-like microvesicles in perforated PC12 cells. Methods: A Companion to Methods Enzymol. 16, 160–169 (1998).

    Article  CAS  Google Scholar 

  26. Schmidt,A., Hannah,M. J. & Huttner,W. B. Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. J. Cell Biol. 137, 445–458 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witke,W. et al. In mouse brain profilin I and II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janmey,P. A. Polyproline affinity method for purification of platelet profilin and modification with pyrene-maleimide. Methods Enzymol. 196, 92–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Micheva,K. D., Ramjaun,A. R., Kay,B. K. & McPherson,P. S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 414, 308–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Ringstad,N., Nemoto,Y. & De Camilli,P. The SH3p4/SH3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl Acad. Sci. USA 94, 8569–8574 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Heuvel,E. et al. Identification of the major synaptojanin-binding proteins in brain. J. Biol. Chem. 272, 8710–8716 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Shupliakov,O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin–SH3 domain interactions. Science 276, 259–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Desnos,C. Clift-O'Grady,L. & Kelly,R. B. Biogenesis of synaptic vesicles in vitro. J. Cell Biol. 130, 1041–1049 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Söling, H.-D., Machado-De Domenech,E., Kleineke,J. & Fest,W. Early effects of β-adrenergic and muscarinic secretagogues on lipid and phospholipid metabolism in guinea pig parotid acinar cells. J. Biol. Chem. 262, 16786–16792 (1987).

    Google Scholar 

  35. Söling, H.-D. et al. Mechanisms of short-term (second range) regulation of the activities of enzymes of lipid and phospholipid metabolism in secretory cells. Adv. Enzyme Regul. 28, 35–50 (1989).

    Article  Google Scholar 

  36. Söling, H.-D., Fest,W., Schmidt,T., Esselmann,H. & Bachmann,V. Signal transmission in exocrine cells is associated with rapid activity changes of acyltransferases and diacylglycerol kinase due to reversible protein phosphorylation. J. Biol. Chem. 264, 10643–10648 (1989).

    Google Scholar 

  37. Coleman,J. Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC). Mol. Gen. Genet. 232, 295–303 (1992).

    CAS  PubMed  Google Scholar 

  38. Lio,Y. C., Reynolds,L. J., Balsinde,J. & Dennis,E. A. Irreversible inhibition of Ca2+-independent phospholipase A2 by methyl arachidonyl fluorophosphonate. Biochim. Biophys. Acta 1302, 55–60 (1996).

    Article  PubMed  Google Scholar 

  39. Eberhardt,C., Gray,P. W. & Tjoelker,L. W. Human lysophosphatidic acid acyltransferase: cDNA cloning, expression, and localization to chromosome 9q34.3. J. Biol. Chem. 272, 20299–20305 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. West,J. et al. Cloning and expression of two lysophosphatidic acid acyltransferase cDNAs that enhance cytokine-induced signaling responses in cells. DNA Cell Biol. 6, 691–701 (1997).

    Article  Google Scholar 

  41. De Camilli,P., Emr,S. D., McPherson,P. S. & Novick,P. Phosphoinositides as regulators in membrane traffic. Science 271, 1533–1538 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Warnock,D. E. & Schmid,S. L. Dynamin GTPase, a force-generating molecular switch. BioEssays 18, 885–893 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Tüscher,O., Lorra,C., Bouma,B., Wirtz,K. W. A. & Huttner,W. B. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN—phosphoinositides as a common denominator? FEBS Lett. 419, 271–275 (1997).

    Article  PubMed  Google Scholar 

  44. Glick,B. S. & Rothman,J. E. Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326, 309–312 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Pfanner,N. et al. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59, 95–102 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Ostermann,J. et al. Stepwise assembly of functionally active transport vesicles. Cell 75, 1015–1025 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Shevchenko,A. et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spector,A. A. & Hoak,J. C. An improved method for the addition of long-chain free fatty acid to protein solutions. Anal. Biochem. 32, 297–302 (1969).

    Article  CAS  PubMed  Google Scholar 

  49. Morris,S. A. & Schmid,S. L. The Ferrari of endocytosis? Curr. Biol. 5, 113–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Kates,M. Techniques in Lipidology (Elsevier, Amsterdam, 1986).

    Google Scholar 

Download references

Acknowledgements

We thank L. Chernomordik, D. Corbeil, M. J. Hannah and I. Trompeter for advice and discussion; M. Fischer and D. Hesse for technical assistance; and A. Summerfield for artwork. M.W. was supported by predoctoral fellowships from the Friedrich-Ebert-Stiftung and the Graduiertenkolleg ‘Molekularbiologische Analyse pathophysiologischer Prozesse’. W.B.H. and H.-D.S. were supported by grants from the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wieland B. Huttner or Hans-Dieter Söling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A., Wolde, M., Thiele, C. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141 (1999). https://doi.org/10.1038/43613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43613

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing