Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ecosystem consequences of species richness and composition in pond food webs

Abstract

Resolving current concerns about the role of biodiversity on ecosystems calls for understanding the separate roles of changes in species numbers and of composition. Recent work shows that primary productivity often, but not always, saturates with species richness within single trophic levels1,2,3,4,5,6,7,8. However, any interpretation of such patterns must consider that variation in biodiversity is necessarily associated with changes in species composition (identity)9,10,11,12, and that changes in biodiversity often occur across multiple trophic levels13,14. Here we present results from a mesocosm experiment in which we independently manipulated species richness and species composition across multiple trophic levels in pond food webs. In contrast to previous studies that focused on single trophic levels, we found that productivity is either idiosyncratic or increases with respect to species richness, and that richness influences trophic structure. However, the composition of species within richness levels can have equally or more marked effects on ecosystems than average effects of richness per se. Indirect evidence suggests that richness and associated changes in species composition affect ecosystem attributes through indirect effects and trophic interactions among species, features that are highly characteristic of natural, complex ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The response of ecosystem rates and trophic structure to species diversity.
Figure 2: The response of ecosystem rates to species composition nested in species diversity.

Similar content being viewed by others

References

  1. Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Schläpfer, F., Schmid, B. & Seidl, I. Expert estimates about effects of biodiversity on ecosystem processes and services. Oikos 84, 346–352 (1999).

    Article  Google Scholar 

  3. Schwartz, M. W. et al. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia 122, 297–305 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Symstad, A. J., Tilman, D., Willson, J. & Knops, J. M. H. Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81, 389–397 (1998).

    Article  Google Scholar 

  6. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    Article  CAS  Google Scholar 

  8. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997).

    Article  ADS  PubMed  Google Scholar 

  10. Grime, J. P. Biodiversity and ecosystem function: the debate deepens. Science 277, 1260–1261 (1997).

    Article  CAS  Google Scholar 

  11. Aarssen, L. W. High productivity in grassland ecosystems: effected by species diversity or productive species? Oikos 80, 183–184 (1997).

    Article  Google Scholar 

  12. Huston, M. A. et al. No consistent effect of plant diversity on productivity. Science 289, 1255a (2000).

    Article  Google Scholar 

  13. Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. BioScience 48, 607–615 (1998).

    Article  Google Scholar 

  15. Hooper, D. & Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305 (1997).

    Article  CAS  Google Scholar 

  16. Mikola, J. Effects of microbivore species composition and basal resource enrichment on trophic-level biomasses in an experimental microbial-based soil food web. Oecologia 117, 396–403 (1998).

    Article  ADS  PubMed  Google Scholar 

  17. Norberg, J. Resource-niche complementarity and autotrophic compensation determines ecosystem-level responses to increased cladoceran species richness. Oecologia 122, 264–272 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    Article  ADS  Google Scholar 

  20. Naeem, S., Hahn, D. & Schuurman, G. Producer-decomposer co-dependency influences biodiversity effects. Nature 403, 762–764 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wetzel, R. G. Limnology (Saunders College Publishing, Orlando, 1983).

    Google Scholar 

  22. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Lund, O. T. Handbook of Common Methods in Limnology (Mosby Company, St Louis, 1979).

    Google Scholar 

  24. Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Sand-Jensen, K. & Borum, J. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41, 137–175 (1991).

    Article  Google Scholar 

  27. McCollum, E. W., Crowder, L. B. & McCollum, S. A. Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79, 1980–1994 (1998).

    Article  Google Scholar 

  28. Martinez, N. D. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr. 61, 367–392 (1991).

    Article  Google Scholar 

  29. Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).

    Article  Google Scholar 

  30. Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 192–200 (Chapman and Hall, New York, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Naeem, J. T. Wootton, J. Bergelson, C. Pfister and M. Huston for comments on the manuscript, and J. Chase and J. Shurin for help in the field. The paper is a Kellogg Biological Station contribution, and was supported by grants from the National Science Foundation, US Department of Education, and the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Downing.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downing, A., Leibold, M. Ecosystem consequences of species richness and composition in pond food webs. Nature 416, 837–841 (2002). https://doi.org/10.1038/416837a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416837a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing