Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of sodium channel clustering by oligodendrocytes

Abstract

As oligodendrocytes wrap axons of the central nervous system (CNS) with insulating myelin sheaths, sodium channels that are initially continuously distributed along axons become segregated into regularly spaced gaps in the myelin called nodes of Ranvier1. It is not known whether the regular spacing of nodes results from regularly spaced glial contacts or is instead intrinsically specified by the axonal cytoskeleton. Contact with Schwann cells induces clustering of sodium channels along the axons of peripheral neurons in vitro and in vivo2–4. Similarly, it has been suggested that astrocyte contact induces clustering of sodium channels along CNS axons5,6. Here we show that oligodendrocytes are necessary for clustering of sodium channels in vitro and in vivo. The induction, but not the maintenance, of sodium-channel clustering along the axons of highly purified rat retinal ganglion cells in culture depends on a protein secreted by oligodendrocytes. Surprisingly, the oligodendrocyte-induced clusters are regularly spaced at the predicted interval in the absence of glial–axonal contact. Mutant rats that are deficient in oligodendrocytes develop few axonal sodium channel clusters in vivo. These results demonstrate a crucial role for oligodendrocytes in inducing clustering of sodium channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, A. F. & Stampfli, R. Evidence for saltatory conduction in peripheral myelinated fibres. J. Physiol. Lond. 108, 315–336 ( 1949).

    Article  Google Scholar 

  2. Joe, E. & Angelides, K. Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact. Nature 356, 333–335 ( 1992).

    Article  ADS  CAS  Google Scholar 

  3. Dugandzija, N. S., Koszowski, A. G., Levinson, S. R. & Shrager, P. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J. Neurosci. 1, 492–503 ( 1995).

    Article  Google Scholar 

  4. Vabnick, I., Novakovic, S. D., Levinson, S. R., Schachner, M. & Shrager, P. The clustering of axonal sodium channels during development of the peripheral nervous system. J. Neurosci. 16, 4914–4922 ( 1996).

    Article  CAS  Google Scholar 

  5. Black, J. A., Sontheimer, H., Oh, Y. & Waxman, S. G. in The Axon (eds Waxman, S. G., Kocsis, J. D. & Stys, P. K.) 116–143 (Oxford University Pressm New York, 1995).

    Book  Google Scholar 

  6. Waxman, S. G. & Black, J. A. in Neuroglia (eds Kettenman, H. & Ransom, B. R.) 587–612 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  7. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. Characterization of the signalling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 ( 1995).

    Article  CAS  Google Scholar 

  8. Hildebrand, C. & Waxman, S. Postnatal differentiation of rat optic nerve fibres: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J. Comp. Neurol. 224, 25–37 ( 1984).

    Article  CAS  Google Scholar 

  9. Hollman, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 ( 1994).

    Article  Google Scholar 

  10. Grumet, M. Cell adhesion molecules and their subgroups in the nervous system. Curr. Opin. Neurobiol. 1, 370–376 ( 1991).

    Article  CAS  Google Scholar 

  11. Barnstable, C. J. & Drager, U. C. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11, 847–855 ( 1984).

    Article  CAS  Google Scholar 

  12. Hess, A. & Young, J. Z. Correlation of internodal length and fibre diameter in the central nervous system. Nature 164 ( 1949).

  13. Peters, A., Palay, S. L. & Webster, H. C. The Fine Structure of the Nervous System (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  14. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359 ( 1995).

    Article  CAS  Google Scholar 

  15. Barres, B. A., Schmid, R., Sendtner, M. & Raff, M. C. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118, 283–295 ( 1993).

    CAS  Google Scholar 

  16. Skoff, R. P., Price, D. L. & Stocks, A. EM autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J. Comp. Neurol. 169, 313–334 ( 1976).

    Article  CAS  Google Scholar 

  17. Csiza, C. K. & Lahunta, A. D. Myelin deficiency (md). Am. J. Pathol. 95, 215–224 ( 1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nadon, N. L. & Duncan, I. Gene expression and oligodendrocyte development in the myelin deficient rat. J. Neurosci. Res. 41, 96–104 ( 1995).

    Article  CAS  Google Scholar 

  19. Kumar, S., Gordon, M. N., Espinosa de los Monteros, M. A. & de Vellis, J. Developmental expression of neural cell type-specific mRNA markers in the myelin-deficient rat brain: inhibition of oligodendrocyte differntiation. J. Neurosci. Res. 21, 268–274 ( 1988).

    Article  CAS  Google Scholar 

  20. Utzschneider, D. A. et al. Action-potential conduction and sodium-channel content in the optic nerve of the myelin-deficient rat. Proc. R. Soc. Lond. B 254, 245–250 ( 1993).

    Article  ADS  CAS  Google Scholar 

  21. Rosenbluth, J. Axolemmal abnormalities in myelin mutants. Ann. NY Acad. Sci. 605, 194–214 ( 1990).

    Article  ADS  CAS  Google Scholar 

  22. Davis, J. Q., Lambert, S. & Bennett, V. Molecular composition of the node of Ranvier: Identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/Third FNIII domain) and NrCAM at nodal axon segments. J. Cell Biol. 135, 1355–1367 ( 1996).

    Article  CAS  Google Scholar 

  23. Isom, L. L. et al. Structure and function of the beta2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433–442 ( 1995).

    Article  CAS  Google Scholar 

  24. Ellisman, M. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J. Neurocytol 8, 6719–735 ( 1979).

    Article  Google Scholar 

  25. Smith, K., Bostock, H. & Hall, S. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J. Neurol. Sci. 54, 13–31 ( 1983).

    Article  Google Scholar 

  26. Sanchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16, 5095–5105 ( 1996).

    Article  CAS  Google Scholar 

  27. Catterall, W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15–48 ( 1992).

    Article  CAS  Google Scholar 

  28. Barres, B. A., Silverstein, B. E., Corey, D. P. & Chun, L. L. Y. Immunological, morphological and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803 ( 1988).

    Article  CAS  Google Scholar 

  29. Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 ( 1992).

    Article  CAS  Google Scholar 

  30. Bhat, R. V. et al. Expression of janusin (Jl-160/180) in the retina and optic nerve of the developing and adult mouse. Glia 17, 169–174 ( 1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, M., Meyer-Franke, A., Lambert, S. et al. Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728 (1997). https://doi.org/10.1038/386724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing