Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The 'Daly gap' as a magmatic catastrophe

Abstract

IGNEOUS rocks very commonly show a strongly bimodal distribution of compositions, one mode corresponding to basalt and the other to felsic magmas1–3. As fractional crystallization of basaltic parents produces a continuum of compositions, the paucity of rocks of intermediate composition—commonly called the Daly gap—has puzzled petrologists since the time of Daly. Gravitational or viscous trapping4,5, large crystal loads restraining convection6,7, and re-melting of deep volcanic layers2 are among the processes that have been offered as physically meaningful explanations of magmatic gaps. Here we propose an alternative interpretation, transposed from chemical reactor control theory8: at large undercooling, thermal feedback in a continuously fed and differentiating magma reservoir promotes the existence of competing thermochemical steady states. Small variations in magma residence time and cooling rate induce a large thermal and chemical swing (magmatic bifurcation or catastrophe), which interrupts the liquid line of descent, leading to bimodal erupted products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daly, R. A. Proc. Am. Acad. Arts. Sci. 60, 1–80 (1925).

    Article  Google Scholar 

  2. Chayes, F. J. geophys. Res. 68, 1519–1534 (1963).

    Article  ADS  Google Scholar 

  3. Clague, D. A. J. Geol. 86, 739–743 (1978).

    Article  ADS  Google Scholar 

  4. Jones, W. B. Geol. Mag. 116, 487–189 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Baker, B. H., Goles, G. G., Leeman, W. P. & Lindstrom, M. M. Contr. Miner. Petrol. 60, 303–322 (1977).

    Article  ADS  Google Scholar 

  6. Brophy, J. G. Contri. Miner. Petrol. 109, 173–182 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Marsh, B. D. Contri. Miner. Petrol. 78, 85–98 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Gray, P. & Scott, S. K. Chemical Oscillations and Instabilities (Oxford Univ. Press, 1994).

    Google Scholar 

  9. Dowty, E. in Physics of the Magmatic Processes (ed. Hargraves, H. B) 419–485 (Princeton Univ. Press, 1980).

    Google Scholar 

  10. Tiller, W. A. The Science of Crystallization: Macroscopic Phenomenon and Defect Generation (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  11. Tiller, W. A. The Science of Crystallization: Microscopic Interfacial Phenomena (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  12. Klein, L. C. & Uhlmann, D. R. Proc. lunar Sci. Conf. 7, 1113–1121 (1976).

    ADS  CAS  Google Scholar 

  13. Brandeis, G. & Jaupart, C. Contr. Miner. Petrol. 96, 24–34 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Mangan, M. T. J. Volcan. geotherm. Res. 44, 295–302 (1990).

    Article  ADS  Google Scholar 

  15. Albarède, F. Geochim. cosmochim. Acta. 57, 615–621 (1993).

    Article  ADS  Google Scholar 

  16. Condomines, M., Tanguy, J.-C. & Michaud, V. Earth planet. Sci. Lett. 132, 25–41 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Clague, D. A. Bull. volcan. 49, 577–587 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Cortini, M. & Scandone, R. J. volcan. geotherm. Res. 12, 393–400 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1959).

    MATH  Google Scholar 

  20. Halliday, A. N. et al. Earth planet. Sci. Lett. 94, 274–290 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Christensen, J. N. & DePaolo, D. J. Contri. Miner. Petrol. 113, 100–114 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Bonnefoi, C. Modélisation de la Dynamique Géochimique des Chambres Magmatiques (DEAMemoir, Clermont-Ferrand, 1994).

    Google Scholar 

  23. Dick, H. J. B., Robinson, P. T. & Meyer, P. S. in Synthesis of Results from Scientific Drillingin the Indian Ocean 1–39 (Geophys. Monogr. 70, Am. Geophys. Union, Washington DC.1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnefoi, C., Provost, A. & Albarède, F. The 'Daly gap' as a magmatic catastrophe. Nature 378, 270–272 (1995). https://doi.org/10.1038/378270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378270a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing