Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new mechanism for calcium loss in forest-floor soils

Abstract

CALCIUM is the fifth most abundant element in trees, and is an essential component for wood formation and the maintenance of cell walls. Depletion of Ca from the rooting zone can result in acidification of soil1 and surface water2 and possibly growth decline and dieback of red spruce3,4. During the past six decades, concentrations of root-available Ca (exchangeable and acid-extractable forms) in forest-floor soils have decreased in the northeastern United States5,6. Both net forest growth and acid deposition have been put forth as mechanisms that can account for this Ca depletion5,6. Here, however, we present data collected in red spruce forests in the northeastern United States that are inconsistent with either of these mechanisms. We propose that aluminium, mobilized in the mineral soil by acid deposition, is transported into the forest floor in a reactive form that reduces storage of Ca, and thus its availability for root uptake. This results in potential stress to trees and, by increasing the demand for Ca, also decreases neutralization of drainage waters, thereby leading to acidification of lakes and streams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van Breemen, N., Mulder, J. & Driscoll, C. T. Pl. Soil 75, 283–308 (1983).

    Article  CAS  Google Scholar 

  2. Jenkins, A., Waters, D. & Donald, A. J. Hydrol. 124, 243–261 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Shortle, W. C. & Smith, K. T. Science 204, 1017–1018 (1988).

    Article  ADS  Google Scholar 

  4. McLaughlin, S. B., Tjoelker, M. G. & Roy, W. K. Can. J. For. Res. 23, 380–386 (1992).

    Article  Google Scholar 

  5. Shortle, W. C. & Bondietti, E. A. Wat. Air & Soil Pollut. 61, 253–267 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Johnson, A. H., Andersen, S. B. & Siccama, T. G. Can. J. For. Res. 24, 39–45 (1994).

    Article  CAS  Google Scholar 

  7. Kahl, J. S. et al. Envir. Sci. Technol. 27, 565–568 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Blume, L. J. et al. Handbook of Methods for Acid Deposition Studies (600/4-90/023, United States Environmental Protection Agency, Washington DC, 1990).

    Google Scholar 

  9. Thomas, G. W. in Methods of Soil Analysis Part 2 (eds Miller, R. H. & Keeney, D. R.) 161–164 (Soil Sci. Soc. of America, Madison, Wisconsin, 1982).

    Google Scholar 

  10. Friedland, A. J., Johnson, A. H. & Siccana, T. G. Wat. Air & Soil Pollut. 21, 161–170 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Parry, S. J. in Chemical Analysis (eds Wineforder, J. D. & Kolthoff, I. M.) Vol. 19 (Wiley, New York, 1991).

    Google Scholar 

  12. Federer, C. A., Turcotte, D. E. & Smith, C. T. Can. J. For. Res. 23, 1026–1032 (1993).

    Article  CAS  Google Scholar 

  13. Lawrence, G. B., Shortle, W. C., David, M. B., Wargo, P. M. & Vogt, K. Study Plan for the Global Change Research Program (US Forest Service Northern Global Change Program Internal Rep., Radnor, Pennsylvania, 1992).

    Google Scholar 

  14. Lawrence, G. B., Lincoln, T. A., Horan-Ross, D. A., Olson, M. L. & Waldron, L. A. Open-File Rep. 95-416 (US Geol. Surv., Troy, New York, 1995).

  15. Cronan, C. S., Walker, W. J. & Bloom, P. R. Nature 324, 140–143 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Mulder, J. & Stein, A. Geochim. cosmochim. Acta 58, 85–94 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Johnson, D. W. & Fernandez, I. J. in Ecology and Decline of Red Spruce in the Eastern United States (eds Eager, C. & Adams, M. B.) 235–270 (Springer, New York, 1992).

    Book  Google Scholar 

  18. NADP/NTN Annual Data Summary 1992 (Nat. Atmospheric Deposition Progm, Colorado State Univ., Fort Collins, Colorado, 1993).

  19. DeConinck, F. Geoderma 24, 101–128 (1980).

    Article  ADS  CAS  Google Scholar 

  20. van Breemen, N., Driscoll, C. T. & Mulder, J. Nature 307, 599–604 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Cronan, C. S. & Goldstein, R. A. in Acidic Precipitation Vol. 1: Case Studies (eds Adriano, D. C. & Havas, M.) 113–135 (Springer, 1989).

    Book  Google Scholar 

  22. Rustad, L. E. & Cronan, C. S. Biogeochemistry 29, 107–129 (1995).

    Article  CAS  Google Scholar 

  23. Mulder, J., Pijpers, M. & Christophersen, N. Wat. Resour. Res. 27, 2919–2928 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Rustad, L. E. thesis, Univ. Maine, (1988).

  25. Cronan, C. S. Tree Physiol. 8, 227–237 (1991).

    Article  CAS  Google Scholar 

  26. Federer, C. A. BROOK90 Version 3.0 (Freeware Computer Program & Documentation, US Forest Service, Durham, NH, 1994).

    Google Scholar 

  27. Miller, E. K., Blum, J. D. & Friedland, A. J. Nature 362, 438–441 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Hedin, L. O. et al. Nature 367, 351–354 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, G., David, M. & Shortle, W. A new mechanism for calcium loss in forest-floor soils. Nature 378, 162–165 (1995). https://doi.org/10.1038/378162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378162a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing