Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite

Abstract

THE melting temperatures of minerals in the Mg–Fe–Si–O-system play a fundamental role in the chemical differentiation, rheology and geodynamics of the Earth's lower mantle. We have previously shown1 that the melting curve of (Mg, Fe)SiO3-perovskite—the dominant mineral in the lower mantle—is extremely steep, implying melting temperatures at the bottom of the lower mantle in excess of 7,000 K. The large difference between actual mantle temperatures and the melting temperature inferred from our experiments suggests that the viscosity of the lower mantle is much larger than that typically used in convection models2. Theoretical estimates of the melting temperature of MgO (refs 3–5) suggest even higher melting temperatures for (Mg, Fe)O-magnesiowiistite, the second most abundant mineral in the lower mantle. We show here, however, that the melting curves of these two minerals are flat compared to the perovskite melting curve, thus lowering the upper bounds for the solidus in the lowermost mantle to about 5,000 K. This reduces the estimate of the viscosity to more realistic levels but still rules out large-scale melting in the lower mantle. Because magnesiowiistite is slightly more dense than Mg–Fe–Si-perovskite due to iron partitioning, chemical segregation in the lower mantle cannot be excluded in regions where the local temperature exceeds the solidus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zerr, A. & Boehler, R. Science 262, 553–555 (1993).

    Article  ADS  CAS  Google Scholar 

  2. van Keken, P. E., Yuen, D. A. & van den Berg, A. P. Science 264, 1437–1439 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Gong, Z., Cohen, R. E. & Boyer, L. L. A. Rep. Director Geophys. Lab. 1990–1991 129–134 (Carnegie Instn. Wash., Washington DC, 1991).

  4. Jackson, I. Phys. Earth. planet. Inter. 14, 86–94 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Ohtani, E. Phys. Earth. planet. Inter. 33, 12–25 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Ito, E. & Katsura, T. in High-Pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 315–322 (Terrapub, Tokyo/American Geophysical Union, Washington DC, 1992).

    Google Scholar 

  7. Kondo, K., Ahrens, T. J. & Sawaoka, A. J. appl. Phys. 54, 4382–4385 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Schmitt, D. R. & Ahrens, T. J. J. geophys. Res. 94, 5851–5871 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Boehler, R. Nature 363, 534–536 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Riley, B. Revue int. Hautes Temp. Refract. 3, 327–336 (1966).

    CAS  Google Scholar 

  11. Lindemann, F. A. Phys. Z. 11, 609–612 (1910).

    CAS  Google Scholar 

  12. Boehler, R. & Ramakrishnan, J. J. geophys. Res. 85, 6996–7002 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Kraut, E. A. & Kennedy, G. C. Phys. Rev. Lett. 16, 608–609 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Kesson, S. E. & FitzGerald, J. D. Earth planet. Sci. Lett. 111, 229–240 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Boehler, R. Earth planet. Sci. Lett. 111, 217–227 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Weertmann, J. & Weertmann, J. R. A. Rev. Earth planet. Sci. 3, 293–315 (1975).

    Article  ADS  Google Scholar 

  17. Chopelas, A. & Boehler, R. Geophys. Res. Lett. 19, 1983–1986 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerr, A., Boehler, R. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite. Nature 371, 506–508 (1994). https://doi.org/10.1038/371506a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371506a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing