Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transitions between explosive and effusive eruptions of silicic magmas

Abstract

WATER-RICH silicic magmas may erupt explosively, giving rise to massive columns of fragmented ash1–5, or effusively as viscous, bubbly lavas to form lava domes6–8. Complex cycles of explosive and effusive eruptions are often observed8–12. Although these two eruption mechanisms have been modelled independently1,8, the conditions under which a volcano exhibits a particular style of eruption are not known and the transitions between eruption styles are poorly understood. By modelling the ascent of magma along a permeable conduit, we show here that, for small magma-chamber overpressures, the style of eruption—explosive or effusive—is dependent on the magma flow rate. We also identify a critical overpressure above which only explosive eruptions occur. Complex eruption sequences follow naturally. For example, if a shallow magmatic system is supplied with magma at an intermediate flow rate, the eruption will be slow and effusive until the chamber over-pressure becomes too large. An explosive eruption then relieves the overpressure and an effusive eruption style resumes. We suggest that monitoring of temporal variations in chamber overpressure (for example, by measuring ground deformation) can be used to assess whether a passively effusing volcano has the potential to erupt explosively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Geophys. J. R. astr. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  2. Giberti, G. & Wilson, L. Bull volcan. 52, 515–521 (1987).

    Article  ADS  Google Scholar 

  3. Dobran, F. J. Volcan. geotherm. Res. 49, 285–311 (1992).

    Article  ADS  Google Scholar 

  4. Wilson, L., Sparks, R. S. J., Huang, T. C. & Watkins, N. D. J. geophys. Res. 83, 1829–1836 (1978).

    Article  ADS  Google Scholar 

  5. Woods, A. W. Bull. volcan. 50, 69–91 (1988).

    Article  Google Scholar 

  6. Eichelberger, J. C., Carrigan, C. R. Westrich, H. R. & Price, R. H. Nature 323, 598–602 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Newhall, C. & Melson, W. J. Volcan. geotherm. Res. 17, 111–131 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Jaupart, C. & Allegre, C. J. Earth planet. Sci. Lett. 102, 413–429 (1991).

    Article  ADS  Google Scholar 

  9. Bursik, M. I. J. Volcan. geotherm. Res. 57, 57–70 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Scandone, R. & Malone, S. D. J. Volcan. Geotherm. Res. 23, 239–262 (1984).

    Article  ADS  Google Scholar 

  11. Moore, J. G., Lipman, P., Swanson, D. & Alpha, T. R. US Geol. Surv. Prof. Pap. 1250, 541–548 (1981).

    Google Scholar 

  12. Christianson, R. L. & Peterson, D. W. US Geol. Surv. Prof. Pap. 1250, 17–30 (1981).

    Google Scholar 

  13. Attewell, P. & Farmer, I. Principles of Engineering Geology (Chapman & Hall, New York, 1976).

    Book  Google Scholar 

  14. Heiken G., Wohletz, K. & Eichelberger, J. C. J. geophys. Res. 93, 4335–4350 (1988).

    Article  ADS  Google Scholar 

  15. Sparks, R. S. J. J. Volcan. geotherm. Res. 3, 1–17 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Wadge, G. J. Volcan. geotherm. Res. 11, 139–168 (1981).

    Article  ADS  Google Scholar 

  17. Barker, S. E. & Malone, S. D. J. geophys. Res. 96, 11883–11894, (1991).

    Article  ADS  Google Scholar 

  18. Blake, S. Nature 289, 783–785 (1981).

    Article  ADS  Google Scholar 

  19. Tait, S. R., Jaupart, C. & Vergniolle, S. Earth planet. Sci Lett. 92, 107–123 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Stasuik, M., Jaupart, C. & Sparks, R. S. J. Earth planet. Sci. Lett. 114, 505–516 (1993).

    Article  ADS  Google Scholar 

  21. Fisher, R. V., Smith, A. L. & Robool, M. J. Geology 8, 472–176 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, A., Koyaguchi, T. Transitions between explosive and effusive eruptions of silicic magmas. Nature 370, 641–644 (1994). https://doi.org/10.1038/370641a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370641a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing