Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials

Abstract

Several hypotheses have been proposed for the origin of the group of lavas having the isotopic signature known as ‘high μ’ (HIMU, where μ= 238U/204Pb)1,2,3,4; these explanations have invoked processes involving recycled oceanic crust and sediment, metasomatically enriched subcontinental lithosphere, or intra-mantle metasomatism1,2,3,4,5,6,7,8,9,10,11,12. Here we present helium isotope analyses of HIMU basalts, with ages of 10–18 Myr, from three islands of the Cook–Austral Archipelago in the southern Pacific Ocean. We find that the HIMU samples have a relatively uniform and low 3He/4He ratio of 6.8 ± 0.9 RA compared with mid-ocean-ridge basalt, whereas samples of other enriched-mantle lavas from this region have more variable and higher signatures. The consistency of our HIMU results with those obtained from previous analyses of HIMU lavas at St Helena13 in the Atlantic Ocean lead us to conclude that a relatively low and uniform 3He/4He ratio represents a general characteristic of the mantle source region for HIMU lavas. Also, the uniform 3He/4He ratio (in both space and time) suggests that recycled oceanic crust and/or sediments are present in the source region for HIMU lavas, as it seems less likely that the other candidate processes, invoking metasomatism, would produce such consistent values.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency of helium isotope ratios obtained in this study for samples for different islands.
Figure 2: The 3He/4He ratios for HIMU and EM samples from the Pacific, Atlantic and Indian Oceans.

Similar content being viewed by others

References

  1. Zindler, A. & Hart S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Nanamura, Y. & Tatsumoto, M. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook–Austral Islands and heterogeneities of mantle plumes. Geochim. Cosmochim. Acta 52, 2909–2904 (1988).

    Article  ADS  Google Scholar 

  3. Chauvel, C., Hofmann, A. W. & Vidal, P. Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Earth Planet. Sci. Lett. 110, 99–119 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Kogiso, T., Tatsumi, Y., Shimoda, G. & Barsczus, H. G. High μ (HIMU) ocean basalts in southern Polynesia: New evidence for whole mantle scale recycling of subducted oceanic crust. J. Geophys. Res. 102, 8085–8103 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  ADS  CAS  Google Scholar 

  6. McKenzie, D. & O'Nions, R. K. Mantle reservoirs and ocean island basalts. Nature 301, 229–231 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Vollmer, R. Earth degassing, mantle metasomatism, and isotopic evolution of the mantle. Geology 11, 452–454 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Hart, S. R., Gerlach, D. C. & White, W. M. Apossible new Sr–Nd–Pb mantle array and consequences for mantle mixing. Geochim. Cosmochim. Acta 50, 1551–1557 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Sun, S.-D. & McDonough, W. F. in Magmatism in the Ocean Basins(eds Saunders, A. D. & Norry, M.J.) 313–345 (Blackwell Geol. Soc. Spec. Publ. No. 42, (1989)).

    Google Scholar 

  10. Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Halliday, A. N. et al. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet. Sci. Lett. 133, 379–395 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1987).

    Article  ADS  Google Scholar 

  13. Graham, D. W., Humphris, S. E., Jenkins, W. J. & Kurz, M. D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett. 110, 121–121 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Vance, D., Stone, J. O. H. & O'Nions, R. K. He, Sr and Nd isotopes in xenoliths from Hawaii and other oceanic islands. Earth Planet. Sci. Lett. 96, 147–160 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Hilton, D. R., Barling, J. & Wheller, G. E. Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373, 330–333 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Turner, D. L. & Jarrard, R. D. K-Ar dating of the Cook–Austral island chain: a test of the hot-spot hypothesis. J. Volcanol. Geotherm. Res. 12, 187–220 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Hémond, C., Devey, C. W. & Chauvel, C. Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem. Geol. 115, 7–45 (1994).

    Article  ADS  Google Scholar 

  19. Chauvel, C., McDonough, W., Guille, G., Maury, R. & Duncan, R. Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem. Geol. 139, 125–143 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Hilton, D. R., Hammerschmidt, K., Loock, G. & Friedrichsen, H. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 57, 2819–2841 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Reid, M. R. & Graham, D. W. Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth Planet. Sci. Lett. 144, 213–222 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Dunai, T. J. & Baur, H. Helium, neon, and argon systematics of the European subcontinental mantle: Implications for its geochemical evolution. Geochim. Cosmochim. Acta 59, 2767–2783 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Hilton, D. R., Hoogewerff, J. A., van Bergen, M. J. & Hammerschmidt, K. Mapping magma sources in the east Sunda-Banda arcs, Indonesia: Constraints from helium isotopes. Geochim. Cosmochim. Acta 56, 851–859 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Hiyagon, H. Retention of solar helium and neon in IDPs in deep sea sediment. Science 263, 1257–1259 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Hart, S. R. He diffusion in olivine. Earth Planet. Sci. Lett. 70, 297–302 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Trull, T. W. & Kurz, M. D. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim. Acta 57, 1313–1324 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry(Cambridge Univ. Press, (1983)).

    Google Scholar 

  28. Hoffmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  ADS  Google Scholar 

  29. Hawkesworth, C. J., Hergt, J. M., Ellam, R. M. & McDermott, F. Element fluxes associated with subduction related magmatism. Phil. Trans. R. Soc. Lond. A335, 393–405 (1991).

    ADS  Google Scholar 

  30. Poreda, R. J. & Farley, K. A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kogiso for samples from Mangaia and Rarotonga Islands, R. Maury for his help during our sampling in Rurutu and Tubuai Islands, and K. Nagao for guidance on technical aspects of the mass spectrometry. Comments from D. Graham were helpful in improving the manuscript. This study was supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan to I.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hanyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyu, T., Kaneoka, I. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–276 (1997). https://doi.org/10.1038/36835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36835

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing