Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Skeletal muscle myosin light chains are essential for physiological speeds of shortening

Abstract

IN muscle each myosin head contains a regulatory light chain (LC2) that is wrapped around the head/rod junction, and an alkali light chain that is distal to LC2 (ref. 1). The role of these light chains in vertebrate skeletal muscle myosin has remained obscure2,3. Here we prepare heavy chains that are free of both light chains in order to determine by a motility assay4 whether the light chains are necessary for movement. We find that removal of light chains from myosin reduces the velocity of actin filaments from 8.8 µm s –1 to 0.8 µm s –1 without significantly decreasing the ATPase activity. Reconstitution of myosin with LC2 or alkali light chain increases filament velocity to intermediate rates, and readdition of both classes of light chains fully restores the original sliding velocity. We conclude that even though the light chains are not essential for enzymatic activity, light-chain/heavy-chain interactions play an important part in the conversion of chemical energy into movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katoh, T. & Lowey, S. J. Cell Biol. 109, 1549–1560 (1989).

    Article  CAS  Google Scholar 

  2. Wagner, P. D. & Giniger, E. Nature 292, 560–562 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Sivaramakrishnan, M. & Burke, M. J. biol. Chem. 257, 1102–1105 (1982).

    CAS  PubMed  Google Scholar 

  4. Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Wagner, P. D. & Weeds, A. G. J. molec. Biol. 109, 455–470 (1977).

    Article  CAS  Google Scholar 

  6. Pastra-Landis, S. C. & Lowey, S. J. biol. Chem. 261, 14811–14816 (1986).

    CAS  PubMed  Google Scholar 

  7. Trybus, K. M. & Chatman, T. A. J. biol. Chem. 268, 4412–4419 (1993).

    CAS  PubMed  Google Scholar 

  8. Winkelmann, D. A., Lowey, S. & Press, J. L. Cell 34, 295–306 (1983).

    Article  CAS  Google Scholar 

  9. Warshaw, D. M., Desrosiers, J. M., Work, S. S. & Trybus, K. M. J. Cell Biol. 111, 453–463 (1990).

    Article  CAS  Google Scholar 

  10. Flicker, P. F., Wallimann, T. & Vibert, P. J. molec. Biol. 169, 723–741 (1983).

    Article  CAS  Google Scholar 

  11. Moss, R. L., Giulian, G. G. & Greaser, M. L. J. biol. Chem. 257, 8588–8591 (1982).

    CAS  PubMed  Google Scholar 

  12. Hofmann, P. A., Metzger, J. M., Greaser, M. L. & Moss, L. M. J. gen. Physiol. 95, 477–498 (1990).

    Article  CAS  Google Scholar 

  13. Pollenz, R. S., Chen, T-L. L., Trivinos-Lagos, L. & Chisholm, R. L. Cell 69, 951–962 (1992).

    Article  CAS  Google Scholar 

  14. Rayment, I. et al. Science 261, 50–58 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Kwon, H. et al. Proc. natn. Acad. Sci. U.S.A. 87, 4771–4775 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Vibert, P. & Cohen, C. J. Musc. Res. Cell Motil. 9, 296–305 (1988).

    Article  CAS  Google Scholar 

  17. Huxley, H. E. & Kress, M. J. Musc. Res. Cell Motil. 6, 153–161 (1985).

    Article  CAS  Google Scholar 

  18. Lowey, S., Waller, G. S. & Trybus, K. M. J. biol. Chem. (in the press).

  19. Work, S. S. & Warshaw, D. M. Analyt. Biochem. 202, 275–285 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowey, S., Waller, G. & Trybus, K. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365, 454–456 (1993). https://doi.org/10.1038/365454a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365454a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing