Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage

Abstract

ACQUIRED resistance to alkylating agents such as N-methyl-N-nitrosourea or N-methyl-N′ -nitro-N-nitrosoguanidine results from the ability to tolerate the potentially cytotoxic methylated base O6-methylguanine (m6-G) in DNA. In the absence of repair by demethylation in situ, m6-G is probably lethal through its inappropriate processing by the cell1. DNA mismatch correction is an attractive candidate for the processing function because although it is replicated, m6-G has no perfect complementary base. Thus, m6-G in DNA might provoke abortive mismatch repair and tolerance could subsequently arise through loss of a mismatch repair pathway2,3. Mismatch correction helps maintain genomic fidelity by removing misincorporated bases and deaminated 5-methylcytosine from DNA, and its loss by mutation confers a mutator phenotype on Escherichia coli4,5. Here we describe human and hamster cell lines that are tolerant to N-methyl-N-nitrosourea and are defective in a DNA mismatch binding activity. The loss of this activity, which acts on G-T mispairs, confers a mutator phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karran, P. & Bignami, M. Nucleic Acids Res. 20, 2933–2940 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karran, P. & Marinus, M. G. Nature 296, 868–869 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Goldmacher, V. S., Cuzick, R. A. & Thilly, W. G. J. biol. Chem. 261, 12462–12471 (1986).

    CAS  PubMed  Google Scholar 

  4. Cox, E. C. A. Rev. genet. 10, 135–156 (1976).

    Article  CAS  Google Scholar 

  5. Lieb, M. Genetics 128, 23–27 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Karran, P., Stephenson, C., Macpherson, P., Cairns-Smith, S. & Priestley, A. Cancer Res. 50, 1532–1537 (1990).

    CAS  PubMed  Google Scholar 

  7. Aquilina, G. et al. Carcinogenesis 9, 1217–1222 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Aquilina, G., Zijno, A., Moscufo, N., Dogliotti, E. & Bignami, M. Carcinogenesis 10, 1219–1223 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Jiricny, J., Hughes, M., Corman, N. & Rudkin, B. B. Proc. natn. Acad. Set. U.S.A. 85, 8860–8864 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Stephenson, C. & Karran, P. J. biol. Chem. 264, 21177–21182 (1989).

    CAS  PubMed  Google Scholar 

  11. Borts, R. H. et al. Genetics 124, 573–584 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Phear, G., Armstrong, W. & Meuth, M. J. molec. Biol. 209, 577–582 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. McGregor, W. G., Maher, V. M. & McCormick, J. J. Somatic Cell and Molecular Genetics 17, 463–469 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Rewinski, C. & Marinus, M. G. Nucleic Acids Res. 15, 8205–8215 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schaaper, R. M. & Dunn, R. L. Proc. natn. Acad. Sci. U.S.A. 84, 6220–6224 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Fleck, O., Michael, H. & Heim, L. Nucleic Acids Res. 20, 2271–2278 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujii, H. & Shimada, T. J. biol. Chem. 264, 10057–10064 (1989).

    CAS  PubMed  Google Scholar 

  18. Linton, J. P. et al. Molec. cell. Biol. 9, 3058–3072 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Modrich, P. J. biol. Chem. 264, 6597–6600 (1989).

    CAS  PubMed  Google Scholar 

  20. Luria, S. E. & Delbrück, M. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lea, D. E. & Coulson, C. A. J. Genet. 49, 264–285 (1949).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branch, P., Aquilina, G., Bignami, M. et al. Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362, 652–654 (1993). https://doi.org/10.1038/362652a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362652a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing