Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core

Abstract

INCREASING anthropogenic emissions of greenhouse gases are expected to influence the Earth's climate, but the mechanisms for this are not yet fully understood. One way to determine the effect of such gases on climate is to study their atmospheric concentrations during periods of past climate change, such as glacial to interglacial transitions. Previous studies on polar ice cores showed that the concentrations of the greenhouse gases CO2 and CH4 were significantly reduced during the last glacial period relative to Holocene values1–5. But no comparable studies have been reported for nitrous oxide (N2O), which is the next most important greenhouse gas and also affects stratospheric ozone6,7 and, potentially, the oxidative capacity of the troposphere8. Here we report results from Antarctic ice cores, showing that the atmospheric N2O concentration was about 30% lower during the Last Glacial Maximum than during the Holocene epoch. Our data also show that present-day N2O concentrations are unprecedented in the past 45 kyr, and hence provide evidence that recent increases in atmospheric N2O are of anthropogenic origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  2. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1988).

    Article  ADS  Google Scholar 

  3. Stauffer, B., Lochbronner, E., Oeschger, H. & Schwander, J. Nature 332, 812–814 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevich, Y. S. & Lorius, C. Nature 333, 655–657 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 345, 127–131 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Hahn, J. & Crutzen, P. J. Phil. Trans. R. Soc. Lond. B296, 521–541 (1982).

    Article  CAS  Google Scholar 

  7. Crutzen, P. J. Tellus 26, 47–57 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Staffelbach, T., Neftel, A., Stauffer, B. & Jacob, D. Nature 349, 603–605 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Ueda, H. T. & Garfield, D. Tech. Rep. 231 (U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1969).

  10. Moor, E. & Stauffer, B. J. Glaciol. 30, 358 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Friedli, H., Moor, E., Oeschger, H., Siegenthaler, U. & Stauffer, B. Geophys. Res. Lett. 11, 1145–1148 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Nature 324, 237–238 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Nature 357, 488–490 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Friedli, H. & Siegenthaler, U. Tellus B40, 129–239 (1988).

    Article  Google Scholar 

  15. Alyea, F. N. et al. in Trends 91 (eds Boden, T. A., Sepanski, R. J. & Stoss, F. W.) 352–369 (CDIAC, Oak Ridge National Laboratory, Tennessee, 1991).

    Google Scholar 

  16. Langway, C. C. & Osada, K. Proc. Symp. Tropospheric Chem. of the Antarctic Region, June 3–6 (Univ. of Colorado, Boulder, 1991).

    Google Scholar 

  17. Khalil, M. A. K. & Rasmussen, R. A. Ann. Glaciol. 10, 73–79 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Etheridge, D. M., Pearman, G. I. & de Silva, F. Ann. Glaciol. 10, 28–33 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Zardini, D., Raynaud, D., Scharffe, D. & Seiler, W. J. atmos. Chem. 8, 189–201 (1989).

    Article  CAS  Google Scholar 

  20. Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986).

    Google Scholar 

  21. Wayne, R. P. in Chemistry of the Atmosphere (ed. Wayne, R. P.) 171–178 (Oxford Univ. Press, 1991).

    Google Scholar 

  22. Intergovernmental Panel on Climate Change. Climate Change—The IPCC Scientific Assessment (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 1990).

  23. Cicerone, R. J. J. geophys. Res. 94, 18265–18271 (1989).

    Article  ADS  Google Scholar 

  24. Duplessy, J. C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  25. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Nature 348, 711–714 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Bolin, B. in The Greenhouse Effect, Climatic Change, and Ecosystems (eds Bolin, B. et al.) 93–156 (Wiley, Chichester, 1986).

    Google Scholar 

  27. Staffelbach, T., Stauffer, B., Sigg, A. & Oeschger, H. Tellus B43, 91–96 (1991).

    Article  Google Scholar 

  28. Lochbronner, E. thesis, Univ. of Berne (1989).

  29. Johnson, S., Dansgaard, W., Clausen, H. B. & Langway, C. C. Nature 235, 429–434 (1972).

    Article  ADS  Google Scholar 

  30. Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Nature 327, 477–482 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Isaksen, I. S. A., Ramaswany, V., Rodhe, H. & Wigley, T. M. L. in Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment, 47–67 (Cambridge Univ. Press, 1992).

    Google Scholar 

  32. Lelieveld, J. & Crutzen, P. J. Nature 355, 339–342 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Elkins, J. W. & Rossen, R. in Summary Report 1988, Geophysical Monitoring for Climatic Change (NOAA ERL, Boulder, Colorado, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuenberger, M., Siegenthaler, U. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360, 449–451 (1992). https://doi.org/10.1038/360449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing