Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismological evidence for metastable olivine inside a subducting slab

Abstract

THE nature and location of the olivine–spinel phase transition inside subducting slabs differ greatly from the situation in the surrounding mantle, due to the different temperature distribution inside the slabs. Two models have been proposed for this phase transition: one in which the location of the phase boundary between olivine and modified (β-phase) spinel is determined by equilibrium thermodynamics1, and the other including a metastable olivine phase which persists to a depth of 550 km (ref. 2). The location of the olivine–spinel transition in the slab may be relevant to the generation of deep earthquakes3–5, and to the buoyancy forces driving subduction6. Here we use travel-time residuals from deep earthquakes recorded by the dense seismograph network in Japan to investigate the configuration of the olivine–spinel phase boundary inside the subducting Pacific plate. Theoretical travel-time residuals for the equilibrium model do not fit the observed residuals, whereas those for the metastable model do, implying the presence of metastable olivine inside the subducting slab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turcotte, D. L. & Schubert, G. J. geophys. Res. 76, 7980–7987 (1971).

    Article  ADS  Google Scholar 

  2. Sung, C. M. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Kirby, S. H. J. geophys. Res. 92, 12789–13800 (1987).

    Article  Google Scholar 

  4. Green, H. W. II, Young, H. W., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Kirby, S. H., Durham, W. B. & Stern, L. A. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Schubert, G. & Turcotte, D. L. J. geophys. Res. 76, 1424–1432 (1971).

    Article  ADS  Google Scholar 

  7. Engdahl, E. R. & Flinn, E. A. Science 163, 177 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Ringwood, A. E. & Major, A. Phys. Earth planet. Inter. 3, 89–108 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Schubert, G., Yuen, D. A. & Turcotte, D. L. Geophys. J. R. astr Soc. 42, 705–735 (1975).

    Article  Google Scholar 

  10. Liu, L. G. Phys. Earth planet. Inter. 32, 226–240 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Solomon, S. C. & U, K. T. P. Phys. Earth planet. Inter. 11, 97–108 (1975).

    Article  ADS  Google Scholar 

  12. Roecker, S. W. J. geophys. Res. 90, 7771–7794 (1985).

    Article  ADS  Google Scholar 

  13. Utsu, T. J. Phys. Earth 23, 367–380 (1975).

    Article  Google Scholar 

  14. Ashiya, K., Asano, S., Yoshii, T., Ishida, M. & Nishiki, T. Tectonophysics 140, 13–27 (1987).

    Article  ADS  Google Scholar 

  15. Suyehiro, K. & Sacks, I. S. Bull seism. Soc. Am. 67, 1051–1060 (1979).

    Google Scholar 

  16. Walck, M. Geophys. J. R. astr. Soc. 76, 697–723 (1984).

    Article  ADS  Google Scholar 

  17. Iidaka, T., Mizoue, M. & Suyehiro, K. J. geophys. Res. (submitted).

  18. Ishida, M. & Hasemi, A. J. geophys. Res. 93, 2076–2094 (1988).

    Article  ADS  Google Scholar 

  19. Kamiya, S. Bull. Earthquake Res. Inst. 66, 383–417 (1991).

    Google Scholar 

  20. Vidale, J. E. Geophys. Res. Lett. 18, 2201–2204 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

lidaka, T., Suetsugu, D. Seismological evidence for metastable olivine inside a subducting slab. Nature 356, 593–595 (1992). https://doi.org/10.1038/356593a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356593a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing