Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neural noise limitations on infant visual sensitivity

Abstract

Visual contrast sensitivity is poor in newborn human infants, but improves rapidly to approach adult levels by 8 months of age1,2,3,4,5. During this period, infant sensitivity can be limited by physical factors affecting photon capture, such as eye size and photoreceptor density6,7. Here we show that infant visual sensitivity is also limited by high levels of noise in the neural transduction process. Using a non-invasive electrophysiological measurement8,9,10 and a visual noise titration technique11, we have found that intrinsic neural noise in neonates is approximately nine times higher than in adults. As intrinsic neural noise decreases during infancy, contrast sensitivity improves proportionally, suggesting that neural noise places critical limits on contrast sensitivity throughout development. Moreover, contrast gain control12, an inhibitory process that adjusts visual responses to changing stimulation, is in place and operating in infants as young as 6 weeks of age, in spite of high levels of neural noise and significant immaturities in contrast sensitivity. The contrast gain control that we observed in human neonates may serve as a building block for more complex forms of visual inhibition, which develop later in infancy13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic examples of the stimuli used in our experiments.
Figure 2: Data from three representative subjects: K.K., L.H. and L.N.
Figure 3: Relationship between contrast threshold, equivalent noise and age of subjects.

Similar content being viewed by others

References

  1. Atkinson, J., Braddick, O. & Braddick, F. Acuity and contrast sensitivity of infant vision. Nature 247, 403–404 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Harris, L., Atkinson, J. & Braddick, O. Visual contrast sensitivity of a 6-month-old infant measured by the evoked potential. Nature 264, 570–571 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Norcia, A. M., Tyler, C. W. & Hamer, R. D. High visual contrast sensitivity in the young human infant. Invest. Ophthalmol. Vis. Sci. 29, 44–49 (1988).

    CAS  PubMed  Google Scholar 

  4. Norcia, A. M., Tyler, C. W. & Hamer, R. D. Development of contrast sensitivity in the human infant. Vision Res. 30, 1475–1486 (1990).

    Article  CAS  Google Scholar 

  5. Pirchio, M., Spinelli, D., Fiorentini, A. & Maffei, L. Infant contrast sensitivity evaluated by evoked potentials. Brain Res. 141, 179–184 (1978).

    Article  CAS  Google Scholar 

  6. Banks, M. S. & Bennett, P. J. Optical and photoreceptor immaturities limit spatial and chromatic vision of human neonates. J. Opt. Soc. Am. 5, 2059–2079 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Wilson, H. R. Development of spatiotemporal mechanisms in the human infant. Vision Res. 28, 611–628 (1988).

    Article  CAS  Google Scholar 

  8. Norcia, A. M., Clarke, M. & Tyler, C. W. Digital filtering and robust regression techniques for estimating sensory thresholds from the evoked potential. IEEE Engng Med. Biol. 4, 26–32 (1985).

    Article  CAS  Google Scholar 

  9. Norcia, A. M., Tyler, C. W., Hamer, R. D. & Wesemann, W. Measurement of spatial contrast sensitivity with the swept contrast VEP. Vision Res. 29, 627–637 (1989).

    Article  CAS  Google Scholar 

  10. Tyler, C. W., Apkarian, P., Levi, D. M. & Nakayama, K. Rapid assessment of visual function: an electronic sweep technique for the pattern evoked potential. Invest. Ophthalmol Vis. Sci. 18, 703–713 (1979).

    CAS  PubMed  Google Scholar 

  11. Pelli, D. G. in Vision: Coding and Efficiency(ed. Blackmore, C.) 1–24 (Cambridge University Press, Cambridge,(1990)).

    Google Scholar 

  12. Bonds, A. B. Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis. Neurosci. 6, 239–255 (1991).

    Article  CAS  Google Scholar 

  13. Morrone, M. C. & Burr, D. C. Evidence for the existence and development of visual inhibition in humans. Nature 321, 235–237 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Campbell, F. W. & Maffei, L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).

    Article  CAS  Google Scholar 

  15. Yuodelis, C. & Hendrickson, A. Aqualitative and quantitative analysis of the human fovea during development. Vision Res. 26, 847–855 (1986).

    Article  CAS  Google Scholar 

  16. Shannon, E., Skoczenski, A. M. & Banks, M. S. Retinal illuminance and contrast sensitivity in human infants. Vision Res. 36, 67–76 (1996).

    Article  CAS  Google Scholar 

  17. Van Nes, F. L. & Bouman, M. A. Spatial modulation transfer in the human eye. J. Opt. Soc. Am. 57, 401–406 (1967).

    Article  ADS  CAS  Google Scholar 

  18. Geisler, W. S. & Albrecht, D. G. Cortical neurons: isolation of contrast gain control. Vision Res. 32, 1409–1410 (1992).

    Article  CAS  Google Scholar 

  19. Ohzawa, I., Sclar, G. & Freeman, R. D. Contrast gain control in the cat's visual system. J. Neurophysiol. 54, 651–667 (1985).

    Article  CAS  Google Scholar 

  20. Burr, D. C. & Morrone, M. C. Inhibitory interactions in the human vision system revealed in pattern-evoked potentials. J. Physiol. (Lond.) 389, 1–21 (1987).

    Article  CAS  Google Scholar 

  21. Shapley, R. M. & Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. (Lond.) 285, 275–298 (1978).

    Article  CAS  Google Scholar 

  22. Skoczenski, A. M., O'Keefe, L. P., Kiorpes, L., Tang, C., Hawken, M. J. & Movshon, J. A. Visual efficiency of macaque LGN neurons. Neurosci. Abstr. 20, 7 (1994).

    Google Scholar 

  23. Pelli, D. G. & Zhang, L. Accurate control of contrast on microcomputer displays. Vision Res. 31, 1337–1350 (1991).

    Article  CAS  Google Scholar 

  24. Tang, Y. & Norcia, A. M. An adaptive filter for the steady-state VEP. Electroencephalogr. Clin. Neurophysiol. 96, 268–277 ((1994)).

    Article  Google Scholar 

  25. Victor, J. D. & Mast, J. Anew statistic for steady-state evoked potentials. Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Eye Institute and the Smith-Kettlewell Eye Research Institute. We thank D. C. Burr, N. V. Graham and J. A. Movshon for discussions, and the parents of our 32 infant subjects for volunteering their time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Norcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoczenski, A., Norcia, A. Neural noise limitations on infant visual sensitivity. Nature 391, 697–700 (1998). https://doi.org/10.1038/35630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35630

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing