Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults

Abstract

Geodetic measurements in actively deforming areas of the continents reveal the pattern of deformation in the lithosphere. If the dominant forces acting on crustal blocks are tractions at their bases, then the long-term motion of each block will be given by the average velocity of the underlying lithosphere. Slip rates between blocks estimated in this way from recent geodetic measurements across fault zones in the South Island of New Zealand and Southern California are in good agreement with slip rates estimated geologically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interseismic and long-term kinematics of crustal blocks within a zone of simple shear.
Figure 2: Variation with depth of velocity parallel to the faults.
Figure 3: Observed crustal displacements between 1982 and 1994 in the Marlborough fault zone in the South Island of New Zealand, expressed as average velocities over the interval.
Figure 4: Geodetically observed crustal displacements in the interval 1970–95 in Southern California, south of the Transverse Ranges, shown in the same manner as Fig. 3.

Similar content being viewed by others

References

  1. Brace, W. & Kohlstedt, D. Limits on lithostatic stress imposed by laboratory experiments. J. Geophys. Res. 85, 6248–6252 (1980).

    Article  ADS  Google Scholar 

  2. Molnar, P. in Fault Mechanics and the Transport Properties of Rocks: a Festschrift in Honor of W. F. Brace(eds Evans, B. & Wong, T.-F.) 435–460 (Academic, London, (1991)).

    Google Scholar 

  3. Chen, W. & Molnar, P. Focal depths of intercontinental and interplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. 88, 4183–4214 (1983).

    Article  ADS  Google Scholar 

  4. Jackson, J. & White, N. Normal faulting in the upper continental crust: observations from regions of active extension. J. Struct. Geol. 11, 15–36 (1989).

    Article  ADS  Google Scholar 

  5. Savage, J. & Burford, R. Accumulation of tectonic strain in California. Bull. Seismol. Soc. Am. 60, 1877–1896 (1970).

    Google Scholar 

  6. Thatcher, W. Systematic inversion of geodetic data in central California. J. Geophys. Res. 84, 2283–2295 (1979).

    Article  ADS  Google Scholar 

  7. Thatcher, W. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. 88, 5893–5902 (1983).

    Article  ADS  Google Scholar 

  8. Prescott, W. H. & Nur, A. The accommodation of relative motion at depth on the San Andreas fault system in California. J. Geophys. Res. 86, 999–1004 (1981).

    Article  ADS  Google Scholar 

  9. McKenzie, D. & Jackson, J. The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements within a deforming zone. Earth Planet. Sci. Lett. 65, 182–202 (1983).

    Article  ADS  Google Scholar 

  10. Houseman, G. & England, P. Finite strain calculations of continental deformation. 1 Method and general results for convergent zones. J. Geophys. Res. 91, 3651–3663 (1986).

    Article  ADS  Google Scholar 

  11. England, P. & Molnar, P. Inferences of deviatoric stress in actively deforming belts from simple physical models. Phil. Trans. R. Soc. Lond. 337, 151–164 (1991).

    Article  ADS  Google Scholar 

  12. Lamb, S. Behaviour of the brittle crust in wide plate boundary zones. J. Geophys. Res. 99, 4457–4483 (1994).

    Article  ADS  Google Scholar 

  13. Lachenbruch, A. & Sass, J. Heat flow from Cajon Pass, fault strength, and tectonic implications. J. Geophys. Res. 97, 4995–5015 (1993).

    Article  ADS  Google Scholar 

  14. Bevin, A. Misc. Series 5, 87–96 ((1981)).

    Google Scholar 

  15. Bourne, S. et al. Crustal deformation of the Marlborough Fault Zone in the South Island of New Zealand: Geodetic constraints over the interval 1982–1994. J. Geophys. Res.(in the press).

  16. Prescott, W., Savage, J. & Kinoshita, W. Strain accumulation rates in the Western United States between 1970 and 1978. J. Geophys. Res. 84, 5423–5435 (1979).

    Article  ADS  Google Scholar 

  17. Savage, J., Prescott, W., Lisowski, M. & King, N. Deformation across the Salton Trough, California, 1973–77. J. Geophys. Res. 84, 3069–3079 (1979).

    Article  ADS  Google Scholar 

  18. Savage, J., Prescott, W. & Gu, G. Strain accumulation in southern California, 1973–1984. J. Geophys. Res. 91, 7455–7473 (1986).

    Article  ADS  Google Scholar 

  19. Lisowski, M., Savage, J. & Prescott, W. The velocity field along the San Andreas fault in central and southern California. J. Geophys. Res. 96, 8369–8389 (1991).

    Article  ADS  Google Scholar 

  20. Larsen, S. & Reilinger, R. Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986–1989. J. Geophys. Res. 97, 8865–8876 (1992).

    Article  ADS  Google Scholar 

  21. Dong, D. The Horizontal Velocity Field in Southern California from a Combination of Terrestrial and Space-geodetic data.Thesis, Massachusetts Inst. Technol.((1993)).

    Google Scholar 

  22. Feigl, K. et al. Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. J. Geophys. Res. 98, 21677–21712 (1993).

    Article  ADS  Google Scholar 

  23. Shen, Z.-k. et al. Horizontal Crustal Deformation Velocity Map Version 1(Crustal Deformation Working Group, Southern California Earthquake Center); available at http://minotaur.ess.ucla.edu/velmap/welcome.shtml

  24. Shen, Z. et al. Crustal deformation measured in Southern California. Eos 78, 477 (1997).

    Article  ADS  Google Scholar 

  25. Scholz, C. The Mechanics of Earthquakes and Faulting 1st edn(Cambridge Univ. Press, (1990)).

    Google Scholar 

  26. Ellsworth, W. in The San Andreas Fault System, California(ed. Wallace, R.) 153–185 (Prof. Pap. 1515, US Geol. Surv., Washington DC, (1990)).

    Google Scholar 

  27. McKay, A. in Reports of Geological Explorations during 1888–1889 Vol. 20, 1–16 (NZ Geol. Surv., Wellington, (1890)).

    Google Scholar 

  28. Cowan, H. The North Canterbury earthquake of September 1, 1888. J. R. Soc. NZ 21, 1–12 (1991).

    Article  Google Scholar 

  29. Eiby, G. An annotated list of New Zealand earthquakes, 1460–1965. NZ J. Geol. Geophys. 11, 630–647 (1967).

    Article  Google Scholar 

  30. Anderson, H., Webb, T. & Jackson, J. Focal mechanisms of large earthquakes in the South Island of New Zealand: implications for the accommodation of Pacific–Australia plate motion. Geophys. J. Int. 115, 1032–1054 (1993).

    Article  ADS  Google Scholar 

  31. Working Group on California Earthquake Probabilities Probabilities of Large Earthquakes Occurring in California on the San Andreas Fault (Open-File Rep. 88–398, USGeol. Surv., (1988)).

    Book  Google Scholar 

  32. Working Group on California Earthquake Probabilities. Seismic hazards in southern California: Probable earthquakes, 1994–2024. Bull. Seismol. Soc. Am. 85, 199 379–439 (1995).

    Google Scholar 

  33. Ward, S. & Valensise, G. Progressive growth of San Clemente Island, California, by blind thrust faulting; implications for fault slip partitioning in the California continental borderland. Geophys. J. Int. 123, 285–293 (1990).

    Google Scholar 

  34. Cowan, H. Late Quaternary displacements on the Hope fault at Glynn Wye, North Canterbury. NZ J. Geol. Geophys. 33, 285–293 (1990).

    Article  Google Scholar 

  35. Berryman, K. et al. The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic expression. Annales Tectonicae VI, 126–163 (1992).

    Google Scholar 

  36. Knuepfer, P. Estimating ages of late Quaternary stream terraces from analysis of weathering rinds and soils. Geol. Soc. Am. Bull. 100, 1224–1236 (1984).

    Article  Google Scholar 

  37. Knuepfer, P. Temporal variations in the latest Quaternary slip across the Australian–Pacific boundary, northeastern South Island, New Zealand. Tectonics 11, 449–464 (1992).

    Article  ADS  Google Scholar 

  38. Van Dissen, R. & Yeats, R. Hope fault, Jordan thrust, and uplift of the seaward Kaikoura range, New Zealand. Geology 19, 392–396 (1991).

    Article  ADS  Google Scholar 

  39. Little, T., Grapes, R. & Berger, G. Late Quaternary strike-slip on the eastern part of the Awatere Fault, South Island, New Zealand. Bull. Geol. Soc. Am.(in the press).

  40. England, P. & Wells, R. E. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin. Geology 19, 978–981 (1991).

    Article  ADS  Google Scholar 

  41. Nur, A. & Mavko, G. Postseismic viscoelastic rebound. Science 183, 204–206 (1974).

    Article  ADS  CAS  Google Scholar 

  42. Turcotte, D. & Spence, D. An analysis of strain accumulation on a strike slip fault. J. Geophys. Res. 79, 4407–4412 (1974).

    Article  ADS  Google Scholar 

  43. Prescott, W. & Yu, S.-B. Geodetic measurement of horizontal deformation in the northern San Francisco Bay region, California. J. Geophys. Res. 91, 7475–7484 (1986).

    Article  ADS  Google Scholar 

  44. Pearson, C., Beavan, J., Darby, D., Blick, G. & Walcott, R. Strain distribution across the Australian–Pacific plate boundary in the central South Island, New Zealand, from 1992 GPS and earlier terrestrial observations. J. Geophys. Res. 100, 22071–22081 (1995).

    Article  ADS  Google Scholar 

  45. Savage, J. Equivalent strike-slip earthquake cycles in half space and lithospheric-asthenosphere earth models. J. Geophys. Res. 95, 4873–4879 (1990).

    Article  ADS  Google Scholar 

  46. Savage, J. & Prescott, W. Asthenosphere readjustment and the earthquake cycle. J. Geophys. Res. 83, 3369–3376 (1978).

    Article  ADS  Google Scholar 

  47. Zoback, M. et al. New evidence on the state of stress on the San Andreas fault system. Science 238, 1105–1111 (1987).

    Article  ADS  CAS  Google Scholar 

  48. Gilbert, L., Scholz, C. & Beavan, J. Strain localisation along the San Andreas Fault; consequences for loading mechanisms. J. Geophys. Res. 12, 23975–23984 (1994).

    Article  ADS  Google Scholar 

  49. Ward, S. & Valensise, G. The Palos Verdes terraces, California: Bathtub rings from a buried reverse fault. J. Geophys. Res. 99, 4485–4494 (1994).

    Article  ADS  Google Scholar 

  50. McNeilan, T., Rockwell, T. & Resnik, G. Style and rate of Holocene slip, Palos Verdes Fault, Southern California. J. Geophys. Res. 101, 8317–8334 (1996).

    Article  ADS  Google Scholar 

  51. DeMets, C., Gordon, R., Argus, D. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  52. DeMets, C., Gordon, R., Argus, D. & Stein, S. The effect of recent revisions ot the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    Article  ADS  Google Scholar 

  53. Molnar, P. & Gipson, J. Very long baseline interferometry and active rotations of crustal blocks in the Western Transverse Ranges, California. Geol. Soc. Am. Bull. 106, 594–606 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. Arnadottir, G. Blick, G. Rowe, R. I. Walcott and P. Wood for their help in the field; J. Beavan, D. Darby and R. I. Walcott for discussions on the measurement and interpretation of active deformation in New Zealand; K. Sieh for many insights into the active deformation of California; Z.-k. Shen and D. D. Jackson for provision of data; and J. Haines for comments. GPS studies of crustal deformation in the South Island of New Zealand were supported at Oxford by the Natural Environment Research Council. The GPS measurements in the Marlborough fault zone were also supported by the Department of Surveying and Land Information, the Institute of Geological and Nuclear Sciences, and Victoria University, Wellington. Part of this work was carried out while P.C.E. held a visiting professorship at the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Bourne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourne, S., England, P. & Parsons, B. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391, 655–659 (1998). https://doi.org/10.1038/35556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35556

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing