Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembled monolayer organic field-effect transistors

A Retraction to this article was published on 06 March 2003

A Corrigendum to this article was published on 22 November 2001

Abstract

The use of individual molecules as functional electronic devices was proposed in 1974 (ref. 1). Since then, advances in the field of nanotechnology have led to the fabrication of various molecule devices and devices based on monolayer arrays of molecules2,3,4,5,6,7,8,9,10,11. Single molecule devices are expected to have interesting electronic properties, but devices based on an array of molecules are easier to fabricate and could potentially be more reliable. However, most of the previous work on array-based devices focused on two-terminal structures: demonstrating, for example, negative differential resistance8, rectifiers9, and re-configurable switching10,11. It has also been proposed that diode switches containing only a few two-terminal molecules could be used to implement simple molecular electronic computer logic circuits12. However, three-terminal devices, that is, transistors, could offer several advantages for logic operations compared to two-terminal switches, the most important of which is ‘gain’—the ability to modulate the conductance. Here, we demonstrate gain for electronic transport perpendicular to a single molecular layer (10–20 Å) by using a third gate electrode. Our experiments with field-effect transistors based on self-assembled monolayers demonstrate conductance modulation of more than five orders of magnitude. In addition, inverter circuits have been prepared that show a gain as high as six. The fabrication of monolayer transistors and inverters might represent an important step towards molecular-scale electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the investigated molecules and transistors.
Figure 2: Transistor characteristics of a 4,4′-biphenyldithiol (molecule 2) SAMFET at room temperature.
Figure 3: Transistor characteristics of molecule 6 SAMFET at room temperature.
Figure 4: Output characteristics of an inverter using two 4,4′-biphenyldithiol (molecule 2) SAMFETs.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Goldhaber-Gordon, D., Montemerlo, M. S., Love, C. J., Opiteck, G. J. & Ellenbogen, J. C. Overview of nanoelectronic devices. Proc. IEEE 85, 521–540 (1997).

    Article  CAS  Google Scholar 

  3. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Andres, R. P. et al. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Dunbar, T. D. et al. Combined scanning tunneling microscopy and infrared spectroscopic characterization of mixed surface assemblies of linear conjugated guest molecules in host alkanethiolate monolayers on gold. J. Phys. Chem. B 104, 4880–4893 (2000).

    Article  CAS  Google Scholar 

  8. Chen, J. et al. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77, 1224–1226 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Metzger, R. M. Electrical rectification by a molecule: The advent of unimolecular electronic devices. Acc. Chem. Res. 32, 950–957 (1999).

    Article  CAS  Google Scholar 

  10. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigerable switch. Science 289, 1172–1175 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  CAS  Google Scholar 

  12. Ellenbogen, J. C. & Love, J. C. Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88, 386–426 (2000).

    Article  CAS  Google Scholar 

  13. Horowitz, G. Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998).

    Article  CAS  Google Scholar 

  14. Forrest, S., Burrows, P. & Thompson, M. The dawn of organic electronics. IEEE Spect. 37, 29–34 (2000).

    Article  Google Scholar 

  15. Di Ventra, M., Pantelides, S. T. & Lang, N. D. The benzene molecule as molecular resonant-tunneling transistor. Appl. Phys. Lett. 76, 3448–3450 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Tour, J. M. Molecular electronics. Synthesis and testing of components. Acc. Chem. Res. 33, 791–804 (2000).

    Article  CAS  Google Scholar 

  17. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Sze, S. M. Semiconductor Devices: Physics and Technology 431–486 (Wiley, New York, 1985).

    Google Scholar 

  19. Rodgers, T. J. & Meindl, J. D. VMOS: High-speed TTL compatible MOS logic. J. Solid State Circ. 9, 239–250 (1974).

    Article  ADS  Google Scholar 

  20. Hergenrother, J. M. et al. in International Electron Devices Meeting 2000. Technical Digest 65–68 (IEEE, Piscataway, 2000).

    Google Scholar 

  21. Hong, S. et al. Molecular conductance spectroscopy of conjugated, phenyl-based molecules on Au(111): the effect of end groups on molecular conduction. Superlattices Microstruct. 28, 289–303 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Tour, J. M. Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev. 96, 537–553 (1996).

    Article  CAS  Google Scholar 

  23. Dodabalapur, A., Torsi, L. & Katz, H. E. Organic transistors: two-dimensional transport and improved electrical characteristics. Science 268, 270–271 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principle calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Natori, K. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Emberly, E. G. & Kirczenow, G. Multiterminal molecular wire systems: A self consistent theory and computer simulations of charging and transport. Phys. Rev. B 62, 10451–10458 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Chen, J. et al. Electronic transport through metal-1,4-phenylene diisocyanide-metal junctions. Chem. Phys. Lett. 313, 741–748 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Karl, N. in Semiconductors Vol. 17i (eds Madelung, O., Schulz, M. & Weiss, H.) 106–218 (Landolt-Börnstein, New Series, Springer, Berlin, 1985).

    Google Scholar 

  29. Schön, J. H., Kloc, Ch. & Batlogg, B. Fractional quantum Hall effect in organic molecular semiconductors. Science 288, 2338–2340 (2000).

    Article  ADS  Google Scholar 

  30. Burshtein, Z. & Williams, D. F. Temperature dependence of carrier generation, and transport in para-terphenyl above and below the 180 K phase transition. J. Chem. Phys. 68, 983–988 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Abusch-Magder, E. Bucher, F. Capasso, Ch. Kloc, J. A. Rogers, M. Schön and E. A. Chandross for many valuable discussions. J.H.S. thanks E. Bucher for the use of the laboratory during his stay at the University of Konstanz. H.M. is grateful to F. Wudl of the University of California at Los Angeles for his support of an internship at Lucent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hendrik Schön.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, J., Meng, H. & Bao, Z. Self-assembled monolayer organic field-effect transistors. Nature 413, 713–716 (2001). https://doi.org/10.1038/35099520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099520

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing