Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurophysiological mechanisms underlying the understanding and imitation of action

Abstract

What are the neural bases of action understanding? Although this capacity could merely involve visual analysis of the action, it has been argued that we actually map this visual information onto its motor representation in our nervous system. Here we discuss evidence for the existence of a system, the 'mirror system', that seems to serve this mapping function in primates and humans, and explore its implications for the understanding and imitation of action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual and motor responses of a mirror neuron in area F5.
Figure 2: Visual and motor responses of a mirror neuron in area PF.
Figure 3: Brain activation in frontal and parietal areas during the observation of mouth, hand and foot actions.
Figure 4: Activity of a mirror neuron in F5 in response to action observation in full vision and in hidden conditions.

Similar content being viewed by others

References

  1. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in the inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka, K., Saito, H. A., Fukada, Y. & Moriya, M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170–189 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Ungerleider, L. G. & Haxby, I. V. “What” and “where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Carey, D. P., Perrett, D. I. & Oram, M. W. in Handbook of Neuropsychology: Action and Cognition Vol. 11 (eds Jeannerod, M. & Grafman, J.) 111–130 (Elsevier, Amsterdam, 1997).

    Google Scholar 

  5. Logothetis, N. Object vision and visual awareness. Curr. Opin. Neurobiol. 8, 536–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kanwisher, N. Domain specificity in face perception. Nature Neurosci. 3, 759–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Merleau-Ponty, M. Phenomenology of Perception (Routledge, London, 1962).

    Google Scholar 

  9. Gallese, V. The “shared manifold” hypothesis: from mirror neurons to empathy. J. Conscious Stud. 8, 33–50 (2001).

    Google Scholar 

  10. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  PubMed  Google Scholar 

  11. Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Rizzolatti, G. et al. Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Exp. Brain Res. 71, 491–507 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Murata, A. et al. Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 78, 2226–2230 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Rizzolatti G., Fogassi, L. & Gallese, V. in The Cognitive Neurosciences 2nd edn (ed. Gazzaniga, M. S.) 539–552 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  15. Perrett, D. I. et al. Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146, 87–113 (1989).

    CAS  PubMed  Google Scholar 

  16. Perrett, D. I., Mistlin, A. J., Harries, M. H. & Chitty, A. J. in Vision and Action: The Control of Grasping (ed. Goodale, M. A.) 163–342 (Ablex, Norwood, New Jersey, 1990).

    Google Scholar 

  17. Jellema, T. & Perrett, D. I. in Attention & Performance XIX. Common Mechanisms in Perception and Action (eds Prinz, W. & Hommel, B.) (Oxford Univ. Press, Oxford, in the press).

  18. Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Matelli, M., Camarda, R., Glickstein, M. & Rizzolatti, G. Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. Comp. Neurol. 251, 281–298 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Seltzer, B. & Pandya, D. N. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 15, 445–463 (1994).

    Article  Google Scholar 

  22. Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Fogassi, L., Gallese, V., Fadiga, L. & Rizzolatti, G. Neurons responding to the sight of goal directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc. Neurosci. Abstr. 24, 257 (1998).

  24. Gallese, V., Fogassi, L., Fadiga, L. & Rizzolatti, G. in Attention & Performance XIX. Common Mechanisms in Perception and Action (eds Prinz, W. & Hommel, B.) 334–355 (Oxford Univ. Press, Oxford, in the press).

  25. Amaral, D. G. et al. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Disfunction (ed. Aggleton, J. P.) 1–66 (Wiley-Liss, New York, 1992).

    Google Scholar 

  26. Baron-Cohen, S. Mindblindness: an Essay on Autism and Theory of Mind (MIT Press/Bradford Books, 1995).

    Google Scholar 

  27. Adolphs, R. Social cognition and the human brain. Trends Cogn. Sci. 3, 469–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Brothers, L., Ring, B. & Kling, A. Response of neurons in the macaque amygdala to complex social stimuli. Behav. Brain Res. 41, 199–213 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Brothers, L. & Ring, B. A neuroethological framework for the representation of minds. J. Cogn. Neurosci. 4, 107–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Bonda, E., Petrides, M., Ostry, D. & Evans, A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J. Neurosci. 16, 3737–3744 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C. & Lenzi, G. L. Observing and imitating emotion: implications for the neurological correlates of empathy. Proc. First Int. Conf. Soc. Cogn. Neurosci. (2001).

  32. Cole, J. D. About Face (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  33. Cole, J. D. Empathy needs a face. J. Conscious Stud. 8, 51–68 (2001).

    Google Scholar 

  34. Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. Resonance behaviors and mirror neurons. Arch. Ital. Biol. 137, 85–100 (1999).

    CAS  PubMed  Google Scholar 

  35. Gastaut, H. J. & Bert, J. EEG changes during cinematographic presentation. Electroencephalogr. Clin. Neurophysiol. 6, 433–444 (1954).

    Article  CAS  PubMed  Google Scholar 

  36. Cohen-Seat, G., Gastaut, H., Faure, J. & Heuyer, G. Etudes expérimentales de l'activité nerveuse pendant la projection cinématographique. Rev. Int. Filmol. 5, 7–64 (1954).

    Google Scholar 

  37. Chatrian, G. E. in Handbook of Electroencephalography (ed. Remond, A.) 104–114 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  38. Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., & Martineau, J. Perception of motion and qEEG activity in human adults. Electroencephalogr. Clin. Neurophysiol. 107, 287–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Cochin, S., Barthelemy, C., Roux, S. & Martineau, J. Observation and execution of movement: similarities demonstrated by quantified electroencephalograpy. Eur. J. Neurosci. 11, 1839–1842 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Altschuler, E. L., Vankov, A., Wang, V., Ramachandran, V. S. & Pineda, J. A. Person see, person do: human cortical electrophysiological correlates of monkey see monkey do cell. Soc. Neurosci. Abstr. 23, 719 (1997).

    Google Scholar 

  41. Altschuler, E. L. et al. Mu wave blocking by observation of movement and its possible use as a tool to study theory of other minds. Soc. Neurosci. Abstr. 26, 68 (2000).

    Google Scholar 

  42. Salmelin, R. & Hari, R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60, 537–550 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Hari, R. & Salmelin, R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 20, 44–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Salenius, S., Schnitzler, A., Salmelin, R., Jousmaki, V. & Hari, R. Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5, 221–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fadiga, L. Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Strafella, A. P. & Paus, T. Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11, 2289–2292 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Baldissera, F., Cavallari, P., Craighero, L. & Fadiga, L. Modulation of spinal excitability during observation of hand actions in humans. Eur. J. Neurosci. 13, 190–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Rizzolatti, G. et al. Localization of grasp representation in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by PET: 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Decety, J. et al. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120, 1763–1777 (1997).

    Article  PubMed  Google Scholar 

  52. Grèzes, J., Costes, N. & Decety, J. Top–down effect of strategy on the perception of human biological motion: a PET investigation. Cogn. Neuropsychol. 15, 553–582 (1998).

    Article  PubMed  Google Scholar 

  53. Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Von Bonin, G. & Bailey, P. The Neocortex of Macaca Mulatta (Univ. Illinois Press, Urbana, 1947).

    Google Scholar 

  55. Petrides, M. & Pandya, D. N. in Handbook of Neuropsychology Vol. IX (eds Boller, F. & Grafman, J.) 17–58 (Elsevier, New York, 1997).

    Google Scholar 

  56. Krams, M., Rushworth, M. F., Deiber, M. P., Frackowiak, R. S. & Passingham, R. E. The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Binkofski, F. et al. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur. J. Neurosci. 11, 3276–3286 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ehrsson, H. H. et al. Cortical activity in precision- versus power-grip tasks: an fMRI study. J. Neurophysiol. 83, 528–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Nishitani, N. & Hari, R. Temporal dynamics of cortical representation for action. Proc. Natl Acad. Sci. USA 97, 913–918 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  62. Jellema, T., Baker, C. I., Wicker, B. & Perrett, D. I. Neural representation for the perception of the intentionality of actions. Brain Cogn 44, 280–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Umiltà, M. A. et al. “I know what you are doing”: a neurophysiological study. Neuron 32, 91–101 (2001).

    Google Scholar 

  64. Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primates posterior parietal cortex. Nature 373, 518–521 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Fillion, C. M., Washburn, D. A. & Gulledge, J. P. Can monkeys (Macaca mulatta ) represent invisible displacement? J. Comp. Psychol. 110, 386–395 (1996).

    Article  Google Scholar 

  66. Visalberghi, E. & Fragaszy, D. in “Language” and Intelligence in Monkeys and Apes (eds Parker, S. T. & Gibson, K. R.) 247–273 (Cambridge Univ. Press, Cambridge, Massachusetts, 1990).

    Book  Google Scholar 

  67. Visalberghi, E. & Fragaszy, D. in Imitation in Animals and Artifacts (eds Dautenhahn, K. & Nehaniv, C.) (MIT Press, Boston, Massachusetts, in the press).

  68. Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. in The Imitative Mind: Development, Evolution and Brain Bases (eds Prinz, W. & Meltzoff, A.) (Cambridge Univ. Press, Cambridge, in the press).

  69. Spence, K. W. Experimental studies of learning and higher mental processes in infra-human primates. Psychol. Bull. 34, 806–850 (1937).

    Article  Google Scholar 

  70. Thorpe, W. H. Learning and Instinct in Animals 2nd edn (Methuen and Co. Ltd, London, 1963).

    Google Scholar 

  71. Whiten, A. & Ham, R. On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. Adv. Study Behav. 21, 239–283 (1992).

    Article  Google Scholar 

  72. Whiten, A. Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). J. Comp. Psychol. 112, 270–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Tomasello, M. & Call, J. Primate Cognition (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  74. Byrne, R. W. The Thinking Ape. Evolutionary Origins of Intelligence (Oxford Univ. Press, Oxford, 1995).

    Book  Google Scholar 

  75. Tinbergen, N. The Herring Gull's World (Collins, London, 1953).

    Google Scholar 

  76. Meltzoff, A. N. & Moore, M. K. Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  77. Bråten, S. (ed.) Intersubjective Communication and Emotion in Early Ontogeny (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  78. Darwin, C. The Expression of the Emotions in Man and Animals (J. Murray, London, 1872).

    Book  Google Scholar 

  79. Dimberg, U., Thunberg, M. & Elmehed, K. Unconscious facial reactions to emotional facial expressions. Psychol. Sci. 11, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hepp-Reymond, M. C., Hüsler, E. J., Maier, M. A. & Qi, H.-X. Force-related neuronal activity in two regions of the primate ventral premotor cortex. Can. J. Physiol. Pharmacol. 72, 571–579 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Fogassi, L. et al. Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp. Brain Res. 128, 194–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Gentilucci, M. et al. Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp. Brain Res. 71, 475–490 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Hoshi, E. & Tanji, J. Integration of target and body-part information in the premotor cortex when planning action. Nature 408, 466–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Byrne, R. Imitation in action. Adv. Study Behav. (in the press).

  85. Byrne, R. W. Imitation without intentionality: using string-parsing to copy the organization of behaviour. Anim. Cogn 2, 63–72 (1999).

    Article  Google Scholar 

  86. Hikosaka, O., Rand, M. K., Miyachi, S. & Miyashita, K. Learning of sequential movements in the monkey: process of learning and retention of memory. J. Neurophysiol. 74, 1652–1661 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K. & Lu, X. Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiol. Learn. Mem. 70, 137–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Hikosaka, O. et al. in The Cognitive Neurosciences 2nd edn (ed. Gazzaniga, M. S.) 553–572 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  89. Tanji, J. New concepts of the supplementary motor area. Curr. Opin. Neurobiol. 6, 782–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Tanji, J., Shima, K. & Mushiake, H. Multiple cortical motor areas and temporal sequencing of movements. Brain Res. Cogn. Brain Res. 5, 117–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci. 1, 209–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Kawato, M. Internal models for motor control and trajectory planning. Neuroreport 9, 718–727 (1999).

    CAS  Google Scholar 

  95. Arbib, M. E. & Rizzolatti, G. in The Nature of Concepts. Evolution, Structure, and Representation (ed. Van Loocke, P.) 128–154 (Routledge, London, 1999).

    Google Scholar 

  96. Greenwald, A. G. Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol. Rev. 77, 73–99 (1970).

    Article  CAS  PubMed  Google Scholar 

  97. Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129–154 (1997).

    Article  Google Scholar 

  98. Brass, M., Bekkering, H., Wohlschlager, A. & Prinz, W. Compatibility between observed and executed finger movements: comparing symbolic, spatial and imitative cues. Brain Cogn 44, 124–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Iacoboni, M. et al. Mirror properties in a sulcus angularis area. Neuroimage 5, S821 (2000).

  100. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 12, 493–501 (1998).

    Article  Google Scholar 

  101. Frith, C. D. & Frith, U. Interacting minds: a biological basis. Science 286, 1692–1695 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nature Rev. Neurosci. 2, 561–567 (2001).

    Article  CAS  Google Scholar 

  103. Williams, J. H. G., Whiten, A., Suddendorf, T. & Perrett, D. I. Imitation, mirror neurons, and autism. Neurosci. Biobehav. Rev. 25, 287–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Von Economo, C. The Cytoarchitectonics of the Human Cerebral Cortex (Oxford Univ. Press, London, 1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCES

Positron emission tomography

Motor control

Magnetic resonance imaging

Attribution theory

Perception of motion

Theory of mind

Glossary

DOUBLE-PULSE TMS

A variant of the transcranial magnetic stimulation technique, in which two coils are used to generate magnetic fields in quick succession over the same cortical region or in different regions at the same time.

H REFLEX

Also known as the Hoffmann reflex, the H reflex results from the stimulation of sensory fibres, which causes an excitatory potential in the motor neuron pool after a synaptic delay. Exceeding the potential threshold for a given motor neuron generates an action potential. The resulting discharge will cause the muscle fibres innervated by that neurone to be activated.

INTRANSITIVE MOVEMENT

A movement not directed towards an object.

MOEBIUS SYNDROME

A disorder characterized by facial paralysis, attributed to defects in the development of the sixth (abducens) and seventh (facial) cranial nerves.

PHENOMENOLOGY

A philosophical movement founded by the German Edward Husserl, dedicated to describing the structures of experience as they present themselves to consciousness, without recourse to theory, deduction or assumptions from other disciplines, such as the natural sciences.

POINT-LIGHT STIMULI

Stimuli devised by the Swedish psychologist Johannson to study biological motion without interference from shape. Light sources are attached to the joints of people and their movements are recorded in a dark environment.

TRANSCRANIAL MAGNETIC STIMULATION

A technique used to stimulate relatively restricted areas of the human cerebral cortex. It is based on the generation of a strong magnetic field near the area of interest which, if changed rapidly enough, will induce an electric field sufficient to stimulate neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2, 661–670 (2001). https://doi.org/10.1038/35090060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing