Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on hydrothermal processes and water exchange in Lake Vostok from helium isotopes

Abstract

Lake Vostok, the largest subglacial lake in Antarctica, is covered by the East Antarctic ice sheet, which varies in thickness between 3,750 and 4,100 m (ref. 1). At a depth of 3,539 m in the drill hole at Vostok station, sharp changes in stable isotopes and the gas content of the ice delineate the boundary between glacier ice and ice accreted through re-freezing of lake water2. Unlike most gases, helium can be incorporated into the crystal structure of ice during freezing3, making helium isotopes in the accreted ice a valuable source of information on lake environment. Here we present helium isotope measurements from the deep section of the Vostok ice core that encompasses the boundary between the glacier ice and accreted ice, showing that the accreted ice is enriched by a helium source with a radiogenic isotope signature typical of an old continental province. This result rules out any significant hydrothermal energy input into the lake from high-enthalpy mantle processes, which would be expected to produce a much higher 3He/4He ratio. Based on the average helium flux for continental areas, the helium budget of the lake leads to a renewal time of the lake of the order of 5,000 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured vertical distribution of helium isotopes across the glacier ice/lake ice boundary (dotted line) at Vostok.

Similar content being viewed by others

References

  1. Kapitsa, A. P., Ridley, J. K., Robin, G. Q., Siegert, M. J. & Zotikov, I. A. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–686 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Jouzel, J. et al. More than 200 meters of lake ice above subglacial lake Vostok, Antarctica. Science 286, 2138–2141 (1999).

    Article  CAS  Google Scholar 

  3. Haas, J., Bullemer, B. & Kahane, A. Diffusion de l'hélium dans la glace monocristalline. Solid State Commun. 9, 2033–2035 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Jean-Baptiste, P., Raynaud, D., Mantisi, F., Sowers, T. & Barkov, N. Measurement of helium isotopes in Antarctic ice: preliminary results from Vostok. CR Acad. Sci. Paris 316, 491–497 (1993).

    CAS  Google Scholar 

  5. Craig, H. & Chou, C. C. Helium isotopes and gases in Dye 3 ice cores. Eos 63, 298 (1982).

    Google Scholar 

  6. Craig, H. in Abstr. Int. Conf. On Stable Isotopes and Isotope Effects (eds Soulié, E. & Roth, E.) 1–112 (Commissariat à l'Energie Atomique, Paris, 1999).

    Google Scholar 

  7. Andrews, J. N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Mamyrin, B. A. & Tolstikhin, I. N. Helium Isotopes in Nature (Elsevier, Amsterdam, 1984).

    Google Scholar 

  9. Craig, H. & Lupton, J. E. Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369–385 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Farley, K. A. & Neroda, E. Noble gases in the Earth's mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Siegert, M. J., Kwok, R., Mayer, C. & Hubbard, B. Water exchange between the subglacial Lake Vostok and the overlying ice sheet. Nature 403, 643–646 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Souchez, R., Petit, J. R., Tison, J. L., Jouzel, J. & Verbeke, V. Ice formation in subglacial Lake Vostok, Central Antarctica. Earth Planet. Sci. Lett. 181, 529–538 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Savvin, A., Greve, R., Calov, R., Mugge, B. & Hutter, K. Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. II. Nested high resolution treatment of Dronning Maud Land, Antarctica. Ann. Glaciol. 30, 69–75 (2000).

    Article  ADS  Google Scholar 

  14. O'Nions, R. K. & Oxburgh, E. R. Heat and helium in the earth. Nature 306, 429–431 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Craig, H., Lupton, J. E., Welhan, J. A. & Poreda, R. Helium isotope ratios in Yellowstone and Lassen Park volcanic gases. Geophys. Res. Lett. 5, 897–900 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Hooker, P. J., Bertrami, R., Lombardi, S., O'Nions, R. K. & Oxburgh, E. R. Helium-3 anomalies and crust-mantle interaction in Italy. Geochim. Cosmochim. Acta 49, 2505–2513 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Davy, J. G. & Miller, K. W. The diffusion of helium through ice. Solid State Commun. 3, 1459–1461 (1970).

    Article  Google Scholar 

  18. Jones, S. J. Diffusion of helium in ice. Phys. Canada 27, 60–61 (1971).

    Google Scholar 

  19. Siegert, M. J. Antarctic subglacial lakes. Earth Sci. Rev. 50, 29–50 (2000).

    Article  ADS  Google Scholar 

  20. Salamatin, A., Vostretsov, R. N., Petit, J. R., Lipenkov, V. Y. & Barkov, N. I. Geophysical and paleoclimatic implications of the temperature profile from the deep borehole at Vostok station (Antarctica). Data Glaciol. Stud. 85, 233–240 (1998).

    Google Scholar 

  21. Jean-Baptiste, P., Mantisi, F., Dapoigny, A. & Stievenard, M. Design and performance of a mass spectrometric facility for measuring helium isotopes in natural waters and for low-level tritium determination by the 3He ingrowth method. Appl. Radiat. Isot. 43, 881–891 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vostok is a joint project between Russia, France and the USA. We thank the Russian Antarctic Expedition for station and drilling-operation support, and the IFRTP (Institut Français de Recherche et Technologies Polaires) and the NSF Office of Polar Program for logistic support. The project was supported in Russia by the Russian Ministry of Sciences, and in France by CNRS and CEA. We thank A. Salamatin, P. Duval and J. Meyssonnier for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jean-Baptiste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean-Baptiste, P., Petit, JR., Lipenkov, V. et al. Constraints on hydrothermal processes and water exchange in Lake Vostok from helium isotopes. Nature 411, 460–462 (2001). https://doi.org/10.1038/35078045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078045

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing