Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

c-myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells

Abstract

Burkitt's lymphoma (BL) is a highly malignant B-cell tumour characterized by chromosomal translocations that constitutively activate the c-myc oncogene. Here we show that BL cells are resistant to apoptosis and do not accumulate ubiquitin conjugates in response to otherwise toxic doses of inhibitors of the proteasome. Deubiquitinating enzymes and the cytosolic subtilisin-like protease tripeptidylpeptidase II are upregulated in BLs, and could be rapidly induced by the overexpression of c-myc in normal B cells carrying oestrogen-driven recombinant Epstein–Barr virus. Apoptosis was induced by inhibiting tripeptidylpeptidase II, suggesting that the activity of this protease may be required for the survival of BL cells. We thus show that there is a regulatory link between c-myc activation and changes in proteolysis that may affect malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BL cells are resistant to induction of apoptosis by inhibitors of the proteasome.
Figure 2: Protein turnover is not affected by inhibition of the proteasome in BL cells.
Figure 3: BL cells fail to accumulate ubiquitin conjugates on inhibition of the proteasome.
Figure 4: Deubiquitinating enzymes are upregulated in BL cells.
Figure 5: TPPII is upregulated in BL cells.
Figure 6: An alternative proteolytic pathway is required for BL cell survival.

Similar content being viewed by others

References

  1. Ciechanover, A. The proteasome-ubiquitin pathway: on protein death and cell life. EMBO J ensates for loss of proteasome function. Nature 392, 618–622 (1998).

    Article  Google Scholar 

  2. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  3. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  4. Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science 283, 978–981 (1999).

    Article  CAS  Google Scholar 

  5. Glas, R., Bogyo, M., McMaster, J., Gaczynska, M. & Ploegh, H. A proteolytic system that compensates for loss of proteasome function. Nature 392, 618–622 (1998).

    Article  CAS  Google Scholar 

  6. Klein, G. Specific chromosomal translocations in the genesis of B-cell lymphomas in mice and men. Cell 32, 311–315 (1983).

    Article  CAS  Google Scholar 

  7. Rowe, M. et al. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 6, 2743–2751 (1987).

    Article  CAS  Google Scholar 

  8. Masucci, M. G. et al. Down-regulation of class I HLA antigens and of the Epstein–Barr virus-encoded latent membrane protein in Burkitt lymphoma lines. Proc. Natl Acad. Sci. USA 84, 4567–4571 (1987).

    Article  CAS  Google Scholar 

  9. Frisan, T., Levitsky, V., Polack, A. & Masucci, M. Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J. Immunol. 160, 3281–3289 (1998).

    CAS  PubMed  Google Scholar 

  10. Frisan, T., Levitsly, V. & Masucci, M. G. Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B-cells. Int. J. Cancer 88, 881–888 (2000).

    Article  CAS  Google Scholar 

  11. Rowe, M. et al. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein–Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur. J. Immunol. 25, 1374–1384 (1995).

    Article  CAS  Google Scholar 

  12. Kempkes, B. et al. B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J. 14, 88– (1995).

    Article  CAS  Google Scholar 

  13. Polack, A. et al. c-Myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc. Natl Acad. Sci. USA 93 (1996).

  14. Pajic, A. et al. Cell cycle activation by c-myc in a Burkitt's lymphoma model cell line. Int. J. Cancer 87, 788–793 (2000).

    Article  Google Scholar 

  15. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  16. Hadari, T., Warms, J. V. B., Rose, I. A. & Hersko, A. A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. J. Biol. Chem. 267, 719–727 (1992).

    CAS  PubMed  Google Scholar 

  17. Papa, F. & Hochstrasser, M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to the product of the tre-2 oncogene. Nature 366, 313–319 (1993).

    Article  CAS  Google Scholar 

  18. Huang, Y., Backer, T. T. & Fisher-Vize, J. A. Control of cell fate by a deubiquitinating enzyme encoded by the fat facet gene. Science 270, 1828–1831 (1995).

    Article  CAS  Google Scholar 

  19. Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M. & D'Andrea, A. D. DUB-1, a novel deubiquitinating enzyme with growth-suppressing activity. Proc. Natl Acad. Sci. USA 93, 3275–3279 (1996).

    Article  CAS  Google Scholar 

  20. Rorth, P., Szabo, K. & Texido, G. The level of C/EBP protein is critical for cell migration during drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell 6, 23–30 (2000).

    Article  CAS  Google Scholar 

  21. Bålöw, R.-M., Tomkinson, B., Ragnarsson, U. & Zetterqvist . Purification, substrate specificity, and classification of tripeptidyl peptidase II. J. Biol. Chem. 261, 2409–2417 (1986).

    PubMed  Google Scholar 

  22. Rose, C. et al. Characterisation and inhibition of a cholecystokinin-inactivating serine peptidase. Nature 380, 403–409 (1986).

    Article  Google Scholar 

  23. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 (1996).

    Article  CAS  Google Scholar 

  24. Marku, C. G., Bossone, S. A. & Patel, A. J. Myc function and regulation. Annu. Rev. Biochem. 61, 806–860 (1992).

    Google Scholar 

  25. Gross-Mesilaty, S. et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA 95, 8058–8063 (1998).

    Article  CAS  Google Scholar 

  26. Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999).

    Article  CAS  Google Scholar 

  27. Gregory, M. A. & Hann, S. R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 (2000).

    Article  CAS  Google Scholar 

  28. Bathia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmocytoma. Nature Genet. 5, 56–61 (1993).

    Article  Google Scholar 

  29. Miller, G. & Lipman, M. Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proc. Natl Acad. Sci. USA 70, 190–194 (1973).

    Article  CAS  Google Scholar 

  30. Diabata, M., Humphreys, R. E., Takada, K. & Sairenji, T. Activation of latent EBV via anti-IgG-triggered, second messenger pathways in the Burkitt's lymphoma cell line Akata. J. Immunol. 144, 4788–4793 (1990).

    Google Scholar 

  31. Klein, G., Dombos, L. & Gothoskar, B. Sensitivity of Epstein–Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus. Int. J. Cancer 10, 44–57 (1972).

    Article  CAS  Google Scholar 

  32. Rooney, C. M. et al. Endemic Burkitt's lymphoma: Phenotypic analysis of tumour biopsy cells and of the derived tumour cell lines. J. Natl Cancer Inst. 77, 681–687 (1986).

    Article  CAS  Google Scholar 

  33. Farvot, M. C. et al. Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with ethnic origin. J. Natl Cancer Inst. 73, 841–847 (1984).

    Google Scholar 

  34. Drexler, H. C. A. Activation of the cell death program by inhibition of proteasome function. Proc. Natl Acad. Sci. USA 94, 855–860 (1997).

    Article  CAS  Google Scholar 

  35. Gaczynska, M., Rock, K. L. & Goldberg, A. L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  Google Scholar 

  36. Dang, L. C., Melandri, F. D. & Stein, R. L. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37, 1868–1879 (1998).

    Article  CAS  Google Scholar 

  37. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  Google Scholar 

  38. Driscoll, J., Brown, M. G., Finley, D. & Monaco, J. J. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ploegh and B. Tomkinson for the NLVS and butabindide, and members of the Masucci laboratory for helpful discussions and critically reading the manuscript. This work was supported by grants from the Swedish Cancer Society, the Swedish Foundation of Strategy Research and the Petrus and Augusta Hedlund Foundation, Stockholm, Sweden, and by the DFG. S.V. was supported by a fellowship from the European Commission Training and Mobility Program on `The central role of the ubiquitin proteasome system in regulatory processes involved in immunological, inflammatory, endocrinological and malignant disorders'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Masucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavioli, R., Frisan, T., Vertuani, S. et al. c-myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells. Nat Cell Biol 3, 283–288 (2001). https://doi.org/10.1038/35060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing