Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization

Abstract

In Drosophila syncytial blastoderm embryos, centrosomes specify the position of actin-based interphase caps and mitotic furrows. Mutations in the scrambled locus prevent assembly of mitotic furrows, but do not block actin cap formation. The scrambled gene encodes a protein that localizes to the mitotic furrows and centrosomes. Sced localization, actin reorganization from caps into mitotic furrows, and centrosome-coordinated assembly of actin caps are not blocked by microtubule disruption. Our results indicate that centrosomes may coordinate assembly of cortical actin caps through a microtubule-independent mechanism, and that Scrambled mediates a second microtubule-independent process that drives mitotic furrow assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sced mutation disrupts mitosis-specific actin organization during the syncytial blastoderm divisions.
Figure 2: Actin cap disruption with cytochalasin D enhances the sced mutant phenotype.
Figure 3: Molecular characterization of the sced locus.
Figure 4: Sced protein localizes to centrosomes and mitotic furrows.
Figure 5: Normal microtubule organization is not required for actin cap or mitotic furrow assembly.
Figure 6: In vivo analysis of mitotic furrow assembly in colchicine-treated embryos.

Similar content being viewed by others

References

  1. Hartwell, L. H. Twenty-five years of cell cycle genetics. Genetics 129, 975–980 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zachariae, W. Progression into and out of mitosis. Curr. Opin. Cell Biol. 11, 708–716 (1999).

    Article  CAS  Google Scholar 

  3. Warn, R. M., Magrath, R. & Webb, S. Distribution of F-actin during cleavage of the Drosophila syncytial blastoderm. J. Cell Biol. 98, 156–162 (1984).

    Article  CAS  Google Scholar 

  4. Warn, R. M. The cytoskeleton of the early Drosophila embryo. J. Cell Sci. 5 (Suppl.), 311–328 (1986).

  5. Karr, T. L. & Alberts, B. M. Organization of the cytoskeleton in early Drosophila embryos. J. Cell Biol. 102, 1494–1509 ( 1986).

    Article  CAS  Google Scholar 

  6. Raff, J. W. & Glover, D. M. Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell 57, 611–619 ( 1989).

    Article  CAS  Google Scholar 

  7. Sullivan, W., Fogarty, P. & Theurkauf, W. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development 118 , 1245–1254 (1993).

    CAS  PubMed  Google Scholar 

  8. Zalokar, M. & Erk, I. Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Microscopie Biol. Cell. 25, 97– 106 (1976).

    Google Scholar 

  9. von Dassow, G. & Schubiger, G. How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J. Cell Biol. 127, 1637–1653 (1994); erratum ibid. 130, 1231–1231 (1995).

    Article  CAS  Google Scholar 

  10. Foe, V. E. & Alberts, B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61 , 31–70 (1983).

    CAS  Google Scholar 

  11. Callaini, G., Dallai, R. & Riparbelli, M. G. Cytochalasin induces spindle fusion in the syncytial blastoderm of the early Drosophila embryo. Biol. Cell 74, 249–254 (1992).

    Article  CAS  Google Scholar 

  12. Warn, R. M., Smith, L. & Warn, A. Three distinct distributions of F-actin occur during the divisions of polar surface caps to produce pole cells in Drosophila embryos. J. Cell Biol. 100, 1010– 1015 (1985).

    Article  CAS  Google Scholar 

  13. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    Article  CAS  Google Scholar 

  14. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).

    Article  CAS  Google Scholar 

  15. Cooley, L., Kelley, R. & Spradling, A. Insertional mutagenesis of the Drosophila genome with single P-elements. Science 239, 1121 –1128 (1988).

    Article  CAS  Google Scholar 

  16. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 ( 2000).

    Article  Google Scholar 

  17. Zhang, C. X., Lee, M. P., Chen, A. D., Brown, S. D. & Hsieh, T. Isolation and characterization of a Drosophila gene essential for early embryonic development and formation of cortical cleavage furrows. J. Cell Biol. 134, 923–934 (1996).

    Article  CAS  Google Scholar 

  18. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo . EMBO J. 19, 241–252 (2000).

    Article  CAS  Google Scholar 

  19. Goode, B. L., Drubin, D. G. & Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63–71 (2000).

    Article  CAS  Google Scholar 

  20. Small, J. V., Kaverina, I., Krylyshkina, O. & Rottner, K. Cytoskeleton cross-talk during cell motility. FEBS Lett. 452, 96–99 (1999).

    Article  CAS  Google Scholar 

  21. Rappaport, R. Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81–89 (1961).

    Article  CAS  Google Scholar 

  22. Robinson, D. N. & Spudich, J. A. Towards a molecular understanding of cytokinesis. Trends Cell Biol. 10, 228–237 (2000).

    Article  CAS  Google Scholar 

  23. Vaizel-Ohayon, D. & Schejter, E. D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889–898 (1999).

    Article  CAS  Google Scholar 

  24. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).

    CAS  Google Scholar 

  25. Foe, V. E., Odell, G. M. & Edgar, B. A. Mitosis and Morphogenesis in the Drosophila Embryo: Point and Counterpoint (eds Bate, M. & Arias, A. M.) (Cold Spring Harbor Laboratory Press, Plainview, 1993).

    Google Scholar 

  26. Foe, V. E., Field, C. M. & Odell, G. M. M. Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos. Development 127, 1767–1787 (2000).

    CAS  PubMed  Google Scholar 

  27. Rothwell, W. F., Zhang, C. X., Zelano, C., Hsieh, T. S. & Sullivan, W. The Drosophila centrosomal protein Nuf is required for recruiting Dah, a membrane associated protein, to furrows in the early embryo. J. Cell Sci. 112, 2885–2893 (1999).

    CAS  PubMed  Google Scholar 

  28. Rothwell, W. F., Fogarty, P., Field, C. M. & Sullivan, W. Nuclear-fallout, a Drosophila protein that cycles from the cytoplasm to the centrosomes, regulates cortical microfilament organization. Development 125, 1295–1303 (1998).

    CAS  PubMed  Google Scholar 

  29. Loncar, D. & Singer, S. J. Cell membrane formation during the cellularization of the syncytial blastoderm of Drosophila. Proc. Natl Acad. Sci. USA 92, 2199– 2203 (1995).

    Article  CAS  Google Scholar 

  30. Balasubramanian, M. K., McCollum, D. & Surana, U. Tying the knot: linking cytokinesis to the nuclear cycle. J. Cell Sci. 113, 1503 –1513 (2000).

    CAS  Google Scholar 

  31. Hales, K. G. et al. Cytokinesis: an emerging unified theory for eukaryotes? Curr. Opin. Cell Biol. 11, 717–725 (1999).

    Article  CAS  Google Scholar 

  32. Sparks, C. A., Morphew, M. & McCollum, D. Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis. J. Cell Biol. 146 , 777–790 (1999).

    Article  CAS  Google Scholar 

  33. He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 94, 7965 –7970 (1997).

    Article  CAS  Google Scholar 

  34. Theurkauf, W. E. & Heck, M. M. Identification and characterization of mitotic mutations in Drosophila. Methods Cell Biol. 61, 317–346 (1999).

    Article  CAS  Google Scholar 

  35. Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686 ( 1988).

    CAS  Google Scholar 

  36. Cooley, L., Berg, C. & Spradling, A. Controlling P-element insertional mutagenesis. Trends Genet. 4, 254–258 (1988).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, 1989).

    Google Scholar 

  38. Brown, N. H. & Kafatos, F. C. Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  Google Scholar 

  39. Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1999).

    Google Scholar 

  40. Theurkauf, W. E. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol. 44, 489 –505 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. J. Cha and D. McCollum for helpful comments on the manuscript, and former and current members of the Theurkauf and Doxsey laboratories for critical discussions during the course of this project. This publication was made possible by a grant from the National Institute of General Medical Sciences, National Institutes for Heath. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of General Medical Sciences or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Theurkauf.

Supplementary information

Figure S1

Chromosome behaviour in wild-type and sced embryos. (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, V., Kramer, J., Kuhn, J. et al. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization. Nat Cell Biol 3, 68–75 (2001). https://doi.org/10.1038/35050579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing