Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidants, oxidative stress and the biology of ageing

Abstract

Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sources and cellular responses to reactive oxygen species (ROS).
Figure 2: Complex III is the major source of mitochondrial ROS production.
Figure 3: Major signalling pathways activated in response to oxidative stress.

Similar content being viewed by others

References

  1. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 2, 298–300 (1957).

    Google Scholar 

  2. McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymatic function for erythrocuperin (hemocuperin). J. Biol. Chem. 244, 6049–6055 (1969).

    CAS  PubMed  Google Scholar 

  3. Ku, H. H., Brunk, U. T. & Sohal, R. S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radical Biol. Med. 15, 621–627 (1993).

    Article  CAS  Google Scholar 

  4. Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Nemoto, S., Takeda, K., Yu, Z. X., Ferrans, V. J. & Finkel, T. A role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol. 20, 7311– 7318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1 . Nature 401, 79–82 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Geiszt, M., Kopp, J. B., Varnai, P., & Leto, T. L. Identification of Renox, an NAD(P)H oxidase in kidney. Proc. Natl Acad. Sci. USA 97, 8010–8014 ( 2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turrens, J. F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17, 3–8 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  10. Golubev, A. G. The other side of metabolism: a review. Biochemistry 61, 1443–1460 (1996).

    Google Scholar 

  11. Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skulachev, V. P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29, 169–202 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  13. Vidal-Puig, A. J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice . J. Biol. Chem. 275, 16258– 16266 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Chae, H. Z., Kang, S. W. & Rhee, S. G. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 300, 219–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Stadtman, E. R. Protein oxidation and aging. Science 257, 1220–1224 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yan, L. J., Levine, R. L. & Sohal, R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl Acad. Sci. USA 94, 11168–11172 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goto, S. et al. Carbonylated proteins in aging and exercise: immunoblot approaches . Mech. Age.Dev. 107, 245– 253 (1999).

    Article  CAS  Google Scholar 

  18. Dukan, S. et al. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA 97, 5746–5749 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Esposito, L. A., Melov, S., Panov, A., Cottrell, B. A. & Wallace, D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl Acad. Sci. USA 96, 4820–4825 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melov, S. et al. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl Acad. Sci. USA 96, 846– 851 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267 , 423–425 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. von Zglinicki, T., Saretzki, G., Docke, W. & Lotze, C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186– 193 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Q. & Ames, B. N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl Acad. Sci. USA 91, 4130–4134 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274 , 7936–7940 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A. & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl Acad. Sci. USA 93, 11848–11852 ( 1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Sachsenmaier, C. et al. Involvement of growth factor receptors in the mammalian UVC response. Cell 78, 963– 972 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X., McCullough, K. D., Franke, T. F. & Holbrook, N. J. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J. Biol. Chem. 275, 14624–14631 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Knebel, A., Rahmsdorf, H. J., Ullrich, A. & Herrlich, P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J. 15 , 5314–5325 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, S. R., Kwon, K. S., Kim, S. R. & Rhee, S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366 –15372 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation . Free Radical Biol. Med. 18, 775– 794 (1995).

    Article  CAS  Google Scholar 

  34. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596– 2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adler, V. et al. Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allen, R. G. & Tresini, M. Oxidative stress and gene regulation . Free Radical Biol. Med. 28, 463– 499 (2000).

    Article  CAS  Google Scholar 

  37. Godon, C. et al. The H2O2 stimulon in Saccharomyces cerevisiae . J. Biol. Chem. 273, 22480– 22489 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Richardson, A. & Holbrook, N. J. in Cellular Aging and Cell Death (eds Holbrook, N. J., Martin, G. R. & Lockshin, R. A.) 67–89 (Wiley, New York, 1996).

  39. Morimoto, R. I. & Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection . Nature Biotechnol. 16, 833– 838 (1998).

    Article  CAS  Google Scholar 

  40. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction . Science 285, 1390–1393 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice . Nature Genet. 25, 294– 297 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Wheeler, J. C., Bieschke, E. T. & Tower, J. Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc. Natl Acad. Sci. USA 92, 10408–10412 ( 1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guyton, K. Z. et al. Age-related changes in activation of mitogen-activated protein kinase cascades by oxidative stress. J. Invest. Dermatol. Symp. Proc. 3, 23–27 ( 1998).

    CAS  Google Scholar 

  44. Guyton, K. Z. et al. Activation of mitogen-activated protein kinase by hydrogen peroxide: role in cell survival following oxidant injury. J. Biol. Chem. 271, 4138–4142 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  45. Liu et. al. Age-related decline in MAP kinase activity in EGF-stimulated rat hepatocytes. J. Biol. Chem. 271, 3604–3607 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Poynter, M. E. & Daynes, R. A. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging . J. Biol. Chem. 273, 32833– 32841 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Supakar, P. C., Jung, M. H., Song, C. S., Chatterjee, B. & Roy, A. K. Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver. J. Biol. Chem. 270, 837–842 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  48. Ponnappan, U. Regulation of transcription factor NFkappa B in immune senescence. Front. Biosci. 1, D152–D168 (1998).

    Article  Google Scholar 

  49. Larsen, P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 8905– 8909 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanfleteren, J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem. J. 292, 605–608 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Murakami, S. & Johnson, T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207–1218 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong, A., Boutis, P. & Hekimi, S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139, 1247–1259 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Branicky, R., Benard, C. & Hekimi, S. clk-1, mitochondria, and physiological rates. Bioessays 22, 48–56 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  55. Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394 , 694–697 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Taub, J. et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399, 162–166 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Melov, S. et al. Extension of lifespan with superoxide dismutase/catalase mimetics . Science 289, 1567–1569 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Dudas S. et al. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila . J. Gerontol. A 50, B117– B127 (1995).

    Article  CAS  Google Scholar 

  59. Harshman, L. G. & Haberer, B. A. Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster. J. Gerontol. A 55, B415–B417 (2000).

    Article  CAS  Google Scholar 

  60. Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Mockett, R. J., Sohal, R. S. & Orr, W. C. Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia . FASEB J. 13, 1733–1742 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Orr, W. C. & Sohal, R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Sun, J. & Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell Biol. 19, 216–228 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Seto, N. O., Hayashi, S. & Tener, G. M. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl Acad. Sci. USA 87, 4270–4274 ( 1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Orr, W. C. & Sohal, R. S. Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 301, 34–40 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, T. et al. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J. Gerontol. Biol. Sci. A 55, B5–B9 (2000).

    Article  CAS  Google Scholar 

  68. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402 , 309–313 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Kao, A. W. et al. Insulin stimulates the phosphorylation of the 66- and 52-kilodalton Shc isoforms by distinct pathways. Endocrinology 138 , 2474–2480 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Masoro, E. J. Caloric restriction and aging: an update. Exp. Gerontol. 35, 299–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59– 63 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heydari, A. R., Wu, B., Takahashi, R., Strong, R. & Richardson, A. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell Biol. 13, 2909–2918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hall, D. M. et al. Caloric restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J. 14, 78–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Roth, G. S., Ingram, D. K. & Lane, M. A. Calorie restriction in primates: will it work and how will we know? J. Am. Geriatr. Soc. 47, 896–903 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. McCall, M. R. & Frei, B. Can antioxidant vitamins maternally reduce oxidative damage in humans? Free Radical Biol. Med. 26, 1034–1053 (1999).

    Article  CAS  Google Scholar 

  76. Yu, B. P. Approaches to anti-aging intervention: the promises and the uncertainties . Mech. Ageing Dev. 111, 73– 87 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Podmore, I. D. et al. Vitamin C exhibits pro-oxidant properties. Nature 392, 559–559 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Melov, S. et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature Genet. 18, 159–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Rong, Y. et al. EUK-134, a synthetic superoxide dismutse and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl Acad. Sci. USA 96, 9897– 9902 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lithgow, G. J. et al. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540–7544 ( 1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnson, T. E. & Hartman, P. S. Radiation effects on life span in Caenorhabditis elegans. J. Gerontol. Biol. Sci. 43, B137–B141 ( 1988).

    Article  CAS  Google Scholar 

  82. Tatar, M., Khazaeli, A. A. & Curtsinger, J. W. Chaperoning extended life. Nature 390, 30 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genet. 13, 25–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Cypser, J. R. & Johnson, T. E. The spe-10 mutant has longer life and increased stress resistance. Neurobiol. Aging 20, 503–512 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Murakami, S. & Johnson, T. E. Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr. Biol. 8, 1091–1094 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Abe, J. & Berk, B. C. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc. Med. 8, 59–64 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  87. Wojcicki, J. et al. Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits. Atherosclerosis 87, 9–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Lebovitz, R. M. et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl Acad. Sci. USA 93, 9782–9787 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Y. B. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide-dismutase. Nature Genet. 11, 376–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, P. H. et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl Acad. Sci. USA 95, 4556–4560 ( 1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martensson, J., Steinherz, R., Jain, A. & Meister, A. Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc. Natl Acad. Sci. USA 86, 8727 –8731 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rozanowska, M. et al. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J. Biol. Chem. 270, 18825–18830 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Hayes, K. C. Retinal degeneration in monkeys induced by deficiencies of vitamin E or A . Invest. Ophthalmol. 13, 499– 510 (1974).

    CAS  PubMed  Google Scholar 

  94. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Andreassen, O. A., Dedeoglu, A., Klivenyi, P., Beal, M. F., & Bush, A. I. N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familiar amyotrophic lateral sclerosis. Neuroreport 11, 2491– 2493 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Nagano, S., Ogawa, Y., Yanagihara, T., & Sakoda, S. Benefit of a combined treatment with trientine and ascorbate in familiar amyotrophic lateral sclerosis model mice. Neurosci. Lett. 265, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Lafon-Cazal, M., Pietri, S., Culcasi, M. & Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 364 , 535–537 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Parker, W. D. Jr, B oyson, S. J. & Parks, J. K. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26, 719–723 (1989).

    Article  PubMed  Google Scholar 

  99. Hennekens, C. H. et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 334, 1145–1149 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Stephens, N. G. et al. Randomised controlled trial of vitamin E in patients with coronary disease. Cambridge Heart Antioxidant Study (CHAOS). Lancet 347, 781–786 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  101. The Alpha-Tocopherol Beta Carotene Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

  102. Seddon, J. M. et al. The use of vitamin supplements and the risk of cataract among US male physicians. Am. J. Public Health 84, 788–792 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hankinson, S. E. et al. Nutrient intake and cataract extraction in women: a prospective study. Br. Med. J 305, 335– 339 (1992).

    Article  CAS  Google Scholar 

  104. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease . N. Engl. J. Med. 328, 176– 183 (1993).

  105. Sano, M. et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study . N. Engl. J. Med. 336, 1216– 1222 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Louwerse, E. S., Weverling, G. J., Bossuyt, P. M., Meyjes, F. E. & de Jong, J. M. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol. 52, 559–564 ( 1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Rovira and R. Wange for their help in the design of illustrations, and T. Johnson, D. Longo, B. Howard, R. Levine, M. Gorospe and N. Epstein for thoughtful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toren Finkel or Nikki J. Holbrook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkel, T., Holbrook, N. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000). https://doi.org/10.1038/35041687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041687

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing