Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphate concentrations in lakes

Abstract

Phosphate is an important nutrient that restricts microbial production in many freshwater1,2,3 and marine environments4,5,6. The actual concentration of phosphate in phosphorus-limited waters is largely unknown because commonly used chemical and radiochemical techniques overestimate the concentration7,8. Here, using a new steady-state radiobioassay to survey a diverse set of lakes, we report phosphate concentrations in lakes that are orders of magnitude lower than estimates made spectrophotometrically or with the frequently used Rigler radiobioassay. Our results, combined with those from the literature, indicate that microbes can achieve rapid turnover rates at picomolar nutrient concentrations. This occurs even though these concentrations are about two orders of magnitude below the level where phosphate uptake is estimated to be half the saturation level for the picoplankton community. Also, while phosphate concentration increased with the concentration of total phosphorus and soluble reactive phosphorus in the lakes we sampled, the proportion of phosphate in the total phosphorus pool decreased from oligotrophic to eutrophic lakes. Such information, as revealed by the phosphate assay that we use here, should allow us to address hypotheses concerning the concentration of phosphate available to planktonic microorganisms in aquatic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steady-state phosphate estimates as a function of total phosphorus for 56 lakes.
Figure 2: Comparison of steady-state and soluble reactive phosphorus estimates of phosphate concentration in a subset of 14 lakes.
Figure 3: Comparison of steady-state and Rigler bioassay estimates of phosphate concentration in Mouse and Ranger Lakes.

Similar content being viewed by others

References

  1. Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Wetzel, R. G. Limnology 2nd edn (Saunders, New York, 1983).

    Google Scholar 

  3. Edmondson, W. T. The Uses Of Ecology: Lake Washington And Beyond 1st edn (Univ. Washington Press, Seattle, 1991).

    Google Scholar 

  4. Cotner, J. B. et al. Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13, 141– 149 (1997).

    Article  Google Scholar 

  5. Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533– 538 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Thingstad, T. F., Zweifel, U. L. & Rassoulzadegan, F. P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol. Oceanogr. 43 , 88–94 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Fisher, T. R. & Lean, D. R. S. Interpretation of radiophosphate dynamics in lake waters. Can. J. Fish. Aquat. Sci. 49, 252–258 (1992).

    Article  CAS  Google Scholar 

  8. Baldwin, D. S. Reactive “organic” phosphorus revisited. Wat. Res. 32, 2265–2270 ( 1998).

    Article  CAS  Google Scholar 

  9. Atkins, W. R. G. The phosphate content of fresh and salt waters in its relationship to the growth of the algal plankton. J. Mar. Biol. Assoc. 13, 119–150 (1923).

    Article  CAS  Google Scholar 

  10. Bentzen, E. & Taylor, W. D. Estimating Michaelis-Menton parameters and lake water phosphate by the Rigler bioassay: importance of fitting technique, plankton size and substrate range. Can. J. Fish. Aquat. Sci. 48, 73–83 (1991).

    Article  CAS  Google Scholar 

  11. Rigler, F. Radiobiological analysis of inorganic phosphorus in lakewater. Verh. Int. Verein. Theor. Angew. Limnol. 16, 465– 470 (1966).

    Google Scholar 

  12. Hudson, J. J., Taylor, W. D. & Schindler, D. W. Planktonic nutrient regeneration and cycling efficiency in temperate lakes. Nature 400, 659– 661 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Dodds, W. K. What controls levels of dissolved phosphate and ammonium in surface waters. Aquat. Sci. 55, 132– 142 (1993).

    Article  Google Scholar 

  14. Harrison, W. G. Nutrient recycling in production experiments. ICES Mar. Sci. Symp. 197, 149–158 ( 1993).

    Google Scholar 

  15. Hudson, J. J. & Taylor, W. D. Measuring regeneration of dissolved phosphorus in planktonic communities. Limnol. Oceanogr. 41, 1560–1565 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Peters, R. H. & Lean, D. R. S. The characterization of soluble phosphorus released by limnetic zooplankton. Limnol. Oceanogr. 18, 270–279 ( 1973).

    Article  ADS  CAS  Google Scholar 

  17. Peters, R. H. & Rigler, F. H. Phosphorus release by Daphnia . Limnol. Oceanogr. 18, 821– 839 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Ferrante, J. G. The characterization of phosphorus excretion products of a natural population of limnetic zooplankton. Hydrobiologia 50, 11–15 (1976).

    Article  Google Scholar 

  19. Taylor, W. D. & Lean, D. R. S. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. Aquat. Sci. 38, 1316–1321 (1981).

    Article  CAS  Google Scholar 

  20. Bentzen, E. & Taylor, W. D. Estimating organic P utilization by freshwater plankton using (32P) ATP. J. Plank. Res. 13, 1223–1238 (1991).

    Article  CAS  Google Scholar 

  21. American Public Health Association Standard Methods for the Examination of Water and Wastewater 19th edn (APHA, Washington, DC, 1995).

    Google Scholar 

  22. Lean, D. R. S., Abbott, A. A. & Pick, F. R. Phosphorus deficiency of Lake Ontario plankton. Can. J. Fish. Aquat. Sci. 44, 2069– 2076 (1987).

    Article  CAS  Google Scholar 

  23. Taylor, W. D. & Lean, D. R. S. Phosphorus pool sizes and fluxes in the epilimnion of a mesotrophic lake. Can. J. Fish. Aquat. Sci. 48, 1293–1301 ( 1991).

    Article  CAS  Google Scholar 

  24. Tarapchak, S. J. & Herche, L. R. Orthophosphate concentrations in lake water: analysis of Rigler's radiobioassay method. Can. J. Fish. Aquat. Sci. 45, 2230– 2237 (1988).

    Article  Google Scholar 

  25. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Landry, M. R. et al. Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis. Limnol. Oceanogr. 42, 405–418 ( 1997).

    Article  ADS  CAS  Google Scholar 

  27. Schindler, D. W. in Proc. IBP-UNESCO Symposium on Productivity Problems of Freshwaters (eds Kajak, Z. & Hillbright-Ilkowska, A.) 303– 331 (UNESCO, Warsaw, 1972).

    Google Scholar 

  28. Canadian Park Service. Prince Albert National Park Resource Description and Analysis. Vol. 2, p. 4–40 (Environment Canada, Parks, Prairie and Northern Region, Winnipeg, Manitoba, 1986).

    Google Scholar 

  29. Prepas, E. E. Orthophosphate turnover time in shallow productive lakes. Can. J. Fish. Aquat. Sci. 40, 1412–1418 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Paul, W. Bell, R. Hazewinkel, J. Almond, S. Leung, T. MacDonald, J. Huvane, B. Parker and N. McMaster for field and laboratory assistance. We also thank the Dorset Environmental Sciences Centre, D. McQueen and the Freshwater Institute for assistance, laboratory space, equipment and accommodation. D. Lean, P. Dillon, G. Mierle and K. Somers provided constructive criticism of the manuscript. A scholarship (NSERC) and a Killam Post-Doctoral Fellowship (University of Alberta) to J. J. H. and NSERC research grants to W. D. T. and D. W. S. supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff J. Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, J., Taylor, W. & Schindler, D. Phosphate concentrations in lakes. Nature 406, 54–56 (2000). https://doi.org/10.1038/35017531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing