Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule

Abstract

The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments1. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction2,3. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting4,5, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS1. Vβ segments are appended to DJβ rearrangements, with little or no direct Vβ to Jβ joining, despite 12/23 compatibility of Vβ 23-RSSs and Jβ12-RSSs6,7. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)β locus containing only one Dβ (Dβ1) gene segment and one Jβ (Jβ1) gene cluster to show that the 5′ Dβ1 12-RSS, but not the Jβ1 12-RSSs, targets rearrangement of a diverse Vβ repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Jβ1ω/ω ES cells.
Figure 2: Vβ and Jβ repertoire in WT, Jβ1ω/ω and Jβ1M5/M5 mice.
Figure 3: Rearrangement of the Jβ1M4 allele.
Figure 4: Rearrangement analysis of Jβ1M3 and Jβ1M5 alleles.

Similar content being viewed by others

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302 , 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Weaver, D. T. V(D)J recombination and double-strand break repair. Adv. Immunol. 58, 29–85 ( 1995).

    Article  CAS  Google Scholar 

  3. Jeggo, P. A. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res. 150, 580– 591 (1998).

    Article  Google Scholar 

  4. Eastman, Q. M., Leu, T. M. & Schatz, D. G. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380, 85– 88 (1996).

    Article  ADS  CAS  Google Scholar 

  5. van Gent, D. C., Ramsden, D. A. & Gellert, M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85, 107– 113 (1996).

    Article  CAS  Google Scholar 

  6. Uematsu, Y. et al. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52, 831–841 (1988).

    Article  CAS  Google Scholar 

  7. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117– 125 (1990).

    Article  CAS  Google Scholar 

  8. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395– 402 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Nadel, B., Tang, A., Escuro, G., Lugo, G. & Feeney, A. J. Sequence of the spacer in the recombination signal sequence affects V(D)J rearrangement frequency and correlates with nonrandom Vκ usage in vivo. J. Exp. Med. 187, 1495–1503 (1998).

    Article  CAS  Google Scholar 

  10. Hesse, J. E., Lieber, M. R., Mizuuchi, K. & Gellert, M. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 3, 1053–1061 (1989).

    Article  CAS  Google Scholar 

  11. Gerstein, R. M. & Lieber, M. R. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 7, 1459–1469 ( 1993).

    Article  CAS  Google Scholar 

  12. Boubnov, N. V., Wills, Z. P. & Weaver, D. T. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res. 23, 1060–1067 ( 1995).

    Article  CAS  Google Scholar 

  13. Ramsden, D. A. & Wu, G. E. Mouse κ light-chain recombination signal sequences mediate recombination more frequently than do those of λ light chain. Proc. Natl Acad. Sci. USA 88, 10721–10725 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Wei, Z. & Lieber, M. R. Lymphoid V(D)J recombination. Functional analysis of the spacer sequence within the recombination signal. J. Biol. Chem. 268, 3180– 3183 (1993).

    CAS  PubMed  Google Scholar 

  15. Connor, A. M. et al. Mouse VH7183 recombination signal sequences mediate recombination more frequently than those of VHJ558. J. Immunol. 155, 5268–5272 (1995).

    CAS  PubMed  Google Scholar 

  16. Akira, S., Okazaki, K. & Sakano, H. Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science 238, 1134–1138 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Gauss, G. H. & Lieber, M. R. The basis for the mechanistic bias for deletional over inversional V(D)J recombination. Genes Dev. 6, 1553–1561 ( 1992).

    Article  CAS  Google Scholar 

  18. VanDyk, L. F., Wise, T. W., Moore, B. B. & Meek, K. Immunoglobulin DH recombination signal sequence targeting: effect of DH coding and flanking regions and recombination partner. J. Immunol. 157, 4005–4015 ( 1996).

    CAS  PubMed  Google Scholar 

  19. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Willerford, D. M., Swat, W. & Alt, F. W. Developmental regulation of V(D)J recombination and lymphocyte differentiation. Curr. Opin. Genet. Dev. 6, 603–609 (1996).

    Article  CAS  Google Scholar 

  21. Sikes, M. L., Suarez, C. C. & Oltz, E. M. Regulation of V(D)J recombination by transcriptional promoters. Mol. Cell. Biol. 19, 2773– 2781 (1999).

    Article  CAS  Google Scholar 

  22. Doty, R. T., Xia, D., Nguyen, S. P., Hathaway, T. R. & Willerford, D. M. Promoter element for transcription of unrearranged T-cell receptor beta-chain gene in pro-T cells. Blood 93, 3017–3025 (1999).

    CAS  PubMed  Google Scholar 

  23. Whitehurst, C. E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 10, 313–322 ( 1999).

    Article  CAS  Google Scholar 

  24. Ramsden, D. A., Baetz, K. & Wu, G. E. Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res. 22, 1785– 1796 (1994).

    Article  CAS  Google Scholar 

  25. Yancopoulos, G. D. et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 311, 727–733 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Jouvin-Marche, E. et al. Genomic organization of the T cell receptor Vα family. EMBO J. 9, 2141– 2150 (1990).

    Article  CAS  Google Scholar 

  27. Alt, F. W. et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 3, 1209– 1219 (1984).

    Article  CAS  Google Scholar 

  28. Rock, E. P., Sibbald, P. R., Davis, M. M. & Chien, Y.-H. CRD3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 ( 1994).

    Article  CAS  Google Scholar 

  29. Sleckman, B. P., Bardon, C. G., Ferrini, R., Davidson, L. & Alt, F. W. Function of the TCR alpha enhancer in αβ and γδ T cells. Immunity 7, 505–515 (1997).

    Article  CAS  Google Scholar 

  30. Gärtner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 10, 537–546 ( 1999).

    Article  Google Scholar 

  31. Sleckman, B. P. et al. Mechanisms that direct ordered assembly of T-cell receptor β locus V, D, and J gene segments. Proc. Natl Acad. Sci. USA. (in the press).

Download references

Acknowledgements

We thank O. Kanagawa and K. Murphy for advice and discussions and D. Fenoglio for assistance on cell sorting. This work is supported in part by the National Institutes of Health (F.W.A.). B.P.S. is a recipient of a Career Development Award from the Burroughs Wellcome Fund. C.H.B. was a fellow of the Irvington Institute for Immunological Research. F.G. is an associate of the Howard Hughes Medical Institute. F.W.A. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry P. Sleckman.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassing, C., Alt, F., Hughes, M. et al. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 405, 583–586 (2000). https://doi.org/10.1038/35014635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014635

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing