Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages

Abstract

AFRICAN honey bees have populated much of South and Central America and will soon enter the United States. The mechanism by which they have spread is controversial. Africanization may be largely the result of paternal gene flow into extant European populations or, alternatively, of maternal migration of feral swarms that have maintained an African genetic integrity. We have been using both mitochondrial and nuclear DNA restriction fragment length polymorphisms to follow the population dynamics between European and African bees. In earlier reports, we suggested that if African honey bees had distinctive mitochondrial (mt) DNA, then it could potentially distinguish the relative contributions of swarming and mating to the Africanization process1,2. Because mtDNA is maternally inherited, it would not be transmitted by mating drones and only transported by queens accompanying swarms. Furthermore, the presence of African mtDNA would reflect unbroken maternal lineages from the original bees introduced from Africa. The value of mtDNA for population studies in general has been reviewed recently3,4. Here we report that 19 feral swarms, randomly caught in Mexico, all carried African mtDNA. Thus, the migrating force of the African honey bee in the American tropics consists of continuous African maternal lineages spreading as swarms. The mating of African drones to European queens seems to contribute little to African bee migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hall, H. G. Proc. natn. Acad. Sci., U.S.A. 83, 4874–4877 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Hall, H. G. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C. E.) 287–293 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  3. Avise, J. C. et al. A. Rev. ecol. Syst. 18, 489–522 (1987).

    Article  Google Scholar 

  4. Moritz, C., Dowling, T. E. & Brown, W. M. A. Rev. ecol. Syst. 18, 269–292 (1987).

    Article  Google Scholar 

  5. Ruttner, F. Proc. 25th Int. Congr. Apimondia. 325–344 (1975).

    Google Scholar 

  6. Kerr, W. E. S. Afr. Bee J. 39, 3–5 (1967).

    Google Scholar 

  7. Michener, C. D. et al. Final Report: Committee on the African Honey Bee (Natn, Acad. Sci. USA, Washington DC, 1972).

    Google Scholar 

  8. Michener, C. D. A. Rev. Entomol. 20, 399–416 (1975).

    Article  CAS  Google Scholar 

  9. Taylor, O. R. Bull. Entomol. Soc. Amer. 31, 14–24 (1985).

    Article  Google Scholar 

  10. McDowell, R. The Africanized Honey Bee in the United States: What Will Happen to the U.S. Beekeeping industry? Agricultural Economic Report No. 519 (US Department of Agriculture, Washington DC, 1984).

    Google Scholar 

  11. Taylor, O. R. A. Internal Med. 104, 267–268 (1986).

    Article  Google Scholar 

  12. Boreham, M. M. & Roubik, D. W. Bull. Entomol. Soc. Amer. 33, 34–38 (1987).

    Article  Google Scholar 

  13. Taylor, O. R. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C. E.) 29–41 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  14. Rinderer, T. E. Bull. Entomol. Soc. Amer. 32, 222–227 (1986).

    Article  Google Scholar 

  15. Erickson, E. H. Jr.,, Erickson, B. J. & Young, A. M. Gleanings Bee Cult. 114, 456–459 (1986).

    Google Scholar 

  16. Rinderer, T. E., Collins, A. M., Hellmich, R. L. II, & Danka, R. G. Apidologie 18, 61–68 (1987).

    Article  Google Scholar 

  17. Rinderer, T. E., Hellmich, R. L. II, Danka, R. G. & Collins, A. M. Science 228, 1119–1121 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Collins, A. M. in Africanized Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C. E.) 110–117 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  19. Sylvester, H. A. J. Apicultural Res. 21, 93–97 (1982).

    Article  Google Scholar 

  20. Daly, H. V. in Africanizer Honey Bees and Bee Mites (eds Needham, G. R., Page, R. E. Jr, Delfinado-Baker, M. & Bowman, C. E.) 245–249 (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  21. Winston, M. L., Taylor, O. R. & Otis, G. W. Bee World 64, 12–21 (1983).

    Article  Google Scholar 

  22. Smith, D. R. & Brown, W. M. Experentia 44, 257–260 (1988).

    Article  CAS  Google Scholar 

  23. Moritz, R. F. A., Hawkins, C. F., Crozier, R. & Mackinlay, A. G. Experentia 42, 322–324 (1986).

    Article  CAS  Google Scholar 

  24. Page, R. E. Jr, Erickson, E. H. Jr & Laidlaw, H. H. Jr Amer. Bee J. 122, 350–355 (1982).

    Google Scholar 

  25. Smith, D. R. & Brown, W. M. Nature, this issue.

  26. Hall, H. G. Genetics, submitted.

  27. Taylor, O. R. Amer. Bee J. 125, 586–587 (1985).

    Google Scholar 

  28. Takahata, N. & Slatkin, M. Proc. natn. Acad. Sci. U.S.A. 81, 1764–1767 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Lamb, T. & Avise, J. C. Proc. natn. Acad. Sci., U.S.A. 83, 2526–2530 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Marchant, A. D. Heredity 60, 39–46 (1988).

    Article  Google Scholar 

  31. Taylor, O. R. Bee World 58, 19–30 (1977).

    Article  Google Scholar 

  32. Harbo, J. R., Bolten, A. B., Rinderer, T. E. & Collins, A. M. J. Apicultural Res. 20, 156–159 (1981).

    Article  Google Scholar 

  33. Liepins, A. & Hennen, S. Devl Biol. 57, 284–292 (1977).

    Article  CAS  Google Scholar 

  34. Miller, S. G., Huettel, M. D., Davis, M.-T. B., Weber, E. H. & Weber, L. A. Molec. gen. Genet 203, 451–461 (1986).

    Article  CAS  Google Scholar 

  35. Schmitz, U. K. & Michaelis, G. Theor. appl. Genet. 76, 565–569 (1988).

    Article  CAS  Google Scholar 

  36. Latorre, A., Moya, A. & Ayala, F. J. Proc. natn. Acad. Sci., U.S.A. 83, 8649–8653 (1986).

    Article  ADS  CAS  Google Scholar 

  37. Tapper, D. P., Van Etten, R. A. & Clayton, D. A. Meth. Enzymol. 97, 426–434 (1983).

    Article  CAS  Google Scholar 

  38. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, H., Muralidharan, K. Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages. Nature 339, 211–213 (1989). https://doi.org/10.1038/339211a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339211a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing