Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclic nucleotides may mediate taste transduction

Abstract

Taste stimulus adsorption is believed to occur at the taste cell microvillous membrane1,2. But due to technical difficulties of inserting glass electrodes into the mammalian taste cell, little is known about the mechanisms of taste transduction3–12. Reliable intracellular recordings are necessary to determine the characteristics of taste cells. This has been accomplished previously in the mouse8–12 and is reported here. Recent experiments indicated that cyclic nucleotides can act on the inner surface of the membranes of a variety of cells to alter their ion-channel activity13–22, and these substances might act as intracellular transmitters in taste cells. But tight junctions found at the apical membrane of mam-malian taste cells do not allow stimuli to enter the taste bud, making it difficult to alter the environment of the taste cell by perfusing with chemical solutions23. Here we report that cyclic AMP, cyclic GMP, EGTA or tetraethyl-ammonium electrophoretically injected into the mouse taste cell induce membrane depolarization and increased membrane resistance. These results suggest that a cyclic nucleotide enzymatic cascade, modulated by calcium ions, may mediate the potassium permeability that controls taste, in a way analogous to visual and olfactory transduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beidler, L. M. J. gen. Physiol. 38, 133–139 (1954).

    Article  CAS  Google Scholar 

  2. Beidler, L. M. & Tonosaki, K. in Taste, Olfaction and the Central Nervous System (ed. Pfaff, D. W.) 707–722 (Rockefeller University Press, New York, 1985).

    Google Scholar 

  3. Kimura, K. & Beidler, L. M. J. Cell comp. Physiol. 58, 131–140 (1961).

    Article  CAS  Google Scholar 

  4. Tateda, H. & Beidler, L. M. J. gen. Physiol. 47, 479–486 (1964).

    Article  CAS  Google Scholar 

  5. Ozeki, M. J. gen. Physiol. 58, 688–699 (1971).

    Article  CAS  Google Scholar 

  6. Ozeki, M. & Sato, M. Comp. Biochem. Physiol. 41A, 391–407 (1972).

    Article  Google Scholar 

  7. Sato, T. & Beidler, L. M. Comp. Biochem. Physiol. 73A, 1–10 (1983).

    Google Scholar 

  8. Tonosaki, K. & Funakoshi, M. Comp. Biochem. Physiol. 78A, 651–656 (1984).

    Google Scholar 

  9. Tonosaki, K. & Funakoshi, M. Comp. Biochem. Physiol. 79A, 625–630 (1984).

    Google Scholar 

  10. Tonosaki, K. & Funakoshi, M. Chem. Senses 9, 381–387 (1984).

    Article  Google Scholar 

  11. Tonosaki, K. & Funakoshi, M. JASTS 18, 45–48 (1984).

    Google Scholar 

  12. Tonosaki, K. & Funakoshi, M. JASTS 19, 196–199 (1985).

    Google Scholar 

  13. Gallagher, J. P. & Shinnick-Gallagher, P. Science 198, 851–852 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Hashiguchi, T., Ushiyama, N. & Kobatashi, H. Nature 271, 267–268 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Miller, W. H. & Nicol, G. D. Nature 280, 64–66 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Miller, W. H. J. gen. Physiol. 80, 103–123 (1982).

    Article  CAS  Google Scholar 

  17. Kawamura, S. & Murakami, M. Jap. J. Physiol. 33, 789–800 (1983).

    Article  CAS  Google Scholar 

  18. Lipton, S. A. Brain. Res. 265, 41–48 (1983).

    Article  CAS  Google Scholar 

  19. Waloga, G. J. Physiol. Lond. 341, 341–357 (1983).

    Article  CAS  Google Scholar 

  20. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Cobbs, W. H. & Pugh, E. N. Jr Nature 313, 585–587 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Nakamura, T. & Gold, G. H. Nature 325, 424–444 (1987).

    Article  Google Scholar 

  23. Mistretta, C. M. Am. J. Physiol. 220, 1162–1167 (1971).

    CAS  PubMed  Google Scholar 

  24. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. H. Nature 312, 446–448 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Weight, F. F. & Votava, J. Science 170, 755–758 (1970).

    Article  ADS  CAS  Google Scholar 

  26. Brown, D. A. & Adams, P. R. Nature 283, 673–676 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Gershenfeld, H. M. & Paupardin-Tritsch, D. J. Physiol. Lond. 243, 427–456 (1974).

    Article  Google Scholar 

  29. Kononenko, N. I., Kostyuk, P. G. & Shcherbatko, A. D. Brain Res. 268, 321–338 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonosaki, K., Funakoshi, M. Cyclic nucleotides may mediate taste transduction. Nature 331, 354–356 (1988). https://doi.org/10.1038/331354a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331354a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing