Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Poly(dA)ṁpoly(dT) is a B-type double helix with a distinctively narrow minor groove

Abstract

The structure of poly(dA)ṁpoly(dT) currently arouses great interest, mainly because dAnṁdTn stretches are associated with considerable DNA bending1,2. Until recently the heteronomous DNA described by Arnott et al.3, with the poly(dA) and poly(dT) chains in A and B conformations respectively, was the only detailed model of this structure. Following our earlier studies of the interaction of DNA and monovalent ions4–6, we examined the X-ray diffraction of the bivalent Ca2+ salt of poly(dA)-poly(dT) (Ca-poly(d A)ṁpoly(dT)) and found no sign of a heteronomous structure: Ca-poly(dA)ṁpoly(dT) in fibres shows fully equivalent B-type conformations of the opposite sugar–phosphate chains. A revision of the structure of the sodium salt, Na-poly(dA).poly(dT), based on this result, yields only a slightly heteronomous structure with each chain in a B-type conformation, which is in much better agreement with the experimental data underlying the original heteronomous model3. Both structures, Ca- and Na-poly(dA)ṁpoly(dT), have a minor groove narrower than that of the B form: this peculiarity seems to be very important for the interaction of poly(d A)ṁpoly(dT) and biologically significant molecules (including proteins and antibiotics). The specific base-pair positions in poly(dA)ṁpoly(dT) may account for the DNA bending adjacent to dAn-dTn tracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koo, H.-S., Wu, H.-M. & Crothers, D. M. Nature 320, 501–506 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Hagerman, P. J. Nature 321, 449–450 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Arnott, S. et al. Nucleic Acids Res. 11, 4141–4145 (1983).

    Article  CAS  Google Scholar 

  4. Bartenev, V. N., Golovanov, Eu. I. & Skuratovskii, I. Ya. in Symposium on Biophysics of Nucleic Acids and Nucleoproteins, Tallinn, 179 (Academy of Sciences of the Estonian SSR, Tallinn, 1981).

    Google Scholar 

  5. Bartenev, V. N. et al. J. molec. Biol. 169, 217–234 (1983).

    Article  CAS  Google Scholar 

  6. Lipanov, A. A. et al. Biofizika 31, 336–338 (1986).

    CAS  Google Scholar 

  7. Langridge, R. et al. J. molec. Biol. 2, 38–64 (1960).

    Article  CAS  Google Scholar 

  8. Arnott, S. & Selsing, E. J. molec. Biol. 88, 551–552 (1974).

    Article  CAS  Google Scholar 

  9. Smith, P. J. C. & Arnott, S. Acta crystallogr. A34, 3–11 (1978).

    Article  Google Scholar 

  10. Hamilton, W. C. Acta crystallogr. 18, 502–510 (1965).

    Article  CAS  Google Scholar 

  11. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  Google Scholar 

  12. Dickerson, R. E., Kopka, M. L. & Pjura, P. in Biological Macromolecules and Assemblies Vol. 2 (eds McPherson, A. & Jurnac, F.) (Wiley, New York, 1985).

    Google Scholar 

  13. Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. J. molec. Biol. 163, 129–146 (1983).

    Article  CAS  Google Scholar 

  14. Alexeev, D. G. et al. in Daresbury Annual Report 1983/84 Appendix, 57 (SERC Daresbury Laboratory, Warrington, 1984).

  15. Skuratovskii, I. Ya., Hasnain, S. S., Alexeev, D. G., Diakun, G. P. & Volkova, L. I. J. inorg. Biochem. (in the press).

  16. Chuprina, V. P. FEBS Lett. 186, 98–102 (1985).

    Article  CAS  Google Scholar 

  17. Chuprina, V. P. FEBS Lett. 195, 363–364 (1986).

    Article  Google Scholar 

  18. Chuprina, V. P. Nucleic Acids Res. (in the press).

  19. Ivanov, V. I., Minchenkova, L. E., Minyat, E. E. & Schyolkina, A. K. Cold Spring Harb. Symp. quant. Biol. 47, 243–250 (1983).

    Article  Google Scholar 

  20. Peck, L. J. & Wang, J. C. Nature 292, 375–378 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Rodes, D. & Klug, A. Nature 292, 378–380 (1981).

    Article  ADS  Google Scholar 

  22. Horowitz, D. S. & Wang, J. C. J. molec. Biol. 173, 75–91 (1984).

    Article  CAS  Google Scholar 

  23. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Diekmann, S. & Wang, J. C. J. molec. Biol. 186, 1–11 (1985).

    Article  CAS  Google Scholar 

  25. Drew, H. R. & Travers, A. A. Cell 37, 491–502 (1984).

    Article  CAS  Google Scholar 

  26. Drew, H. R. & Travers, A. A. J. molec. Biol. 186, 773–790 (1985).

    Article  CAS  Google Scholar 

  27. Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R. E. J. molec. Biol. 183, 553–563 (1985).

    Article  CAS  Google Scholar 

  28. Dickerson, R. E. & Kopka, M. L. J. biomolec. Struct. Dyn. 3, 423–431 (1985).

    Article  CAS  Google Scholar 

  29. Solomon, M. J., Strauss, F. & Varshavsky, A. Proc. natn. Acad. Sci. U.S.A. 83, 1276–1280 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Bartenev, V. N., Kameneva, N. G. & Lipanov, A. A. Acta crystallogr. (in the press).

  31. Klug, A., Crick, F. H. C. & Wyckoff, H. W. Acta crystallogr. 11, 199–213 (1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, D., Lipanov, A. & Ya. Skuratovskii, I. Poly(dA)ṁpoly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 325, 821–823 (1987). https://doi.org/10.1038/325821a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325821a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing