Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity

Abstract

Monocular lid suture during the sensitive period early in the life of a kitten disrupts normal development of inputs from the two eyes to the visual cortex, causing a decrease in the fraction of cortical cells responding to the deprived eye1. Such an ocular dominance shift has been assumed to depend on patterned visual experience, because no change in cortical physiology is produced by inequalities between the two eyes in retinal illumination2 or temporally modulated diffuse light stimulation3,4. A higher-level process, involving gating signals from areas outside striate cortex, has been proposed to ensure that sustained changes in synaptic efficacy occur only in response to behaviourally significant visual inputs5. To test whether such a process is necessary for ocular dominance plasticity, we treated 4-week-old kittens with visual deprivation and monocular tetrodotoxin (TTX) injections to create an imbalance in the electrical activities of the two retinas in the absence of patterned vision. After 1 week of treatment we determined the ocular dominance distribution of single units in primary visual cortex. In all kittens studied, a significant ocular dominance shift was found. In addition to this physiological change, there was an anatomical change in the lateral geniculate nucleus, where cells were larger in laminae receiving input from the more active eye. Our results indicate that patterned vision is not necessary for visual cortical plasticity, and that an imbalance in spontaneous retinal activity alone can produce a significant ocular dominance shift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  2. Blakemore, C. J. Physiol., Lond. 261, 423–444 (1976).

    Article  CAS  Google Scholar 

  3. Singer, W., Rauschecker, J. & Werth, R. Brain Res. 134, 568–572 (1977).

    Article  CAS  Google Scholar 

  4. Wilson, J. R., Webb, S. V. & Sherman, S. M. Brain Res. 136, 277–287 (1977).

    Article  CAS  Google Scholar 

  5. Singer, W. in The Neurosciences Fourth Study Program (eds Schmitt, F. O. & Worden, F. G.) 1093–1110 (MIT, Cambridge, 1979).

    Google Scholar 

  6. Stryker, M. P. & Harris, W. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  7. Schopmann, A. & Stryker, M. P. Nature 293, 574–576 (1981).

    Article  ADS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  9. Movshon, J. A. & Dursteler, M. R. J. Neurophysiol. 40, 1255–1265 (1977).

    Article  CAS  Google Scholar 

  10. Kuppermann, B. D. & Kasamatsu, T. Nature 306, 465–468 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Movshon, J. A. J. Physiol., Lond. 261, 125–174 (1976).

    Article  CAS  Google Scholar 

  12. Reiter, H. O., Waitzman, D. M. & Stryker, M. P. Soc. Neurosci. Abstr. 11, 463 (1985).

  13. Eysel, U. T. & Wolfherd, E. J. comp. Neurol. 229, 301–309 (1983).

    Article  Google Scholar 

  14. Harris, W. A. & Stryker, M. P. Soc. Neurosci. Abstr. 3, 1785 (1977).

    Google Scholar 

  15. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  16. Olson, C. R. & Freeman, R. D. J. Neurophysiol. 38, 26–32 (1975).

    Article  CAS  Google Scholar 

  17. Stryker, M. P. Soc. Neurosci. Abstr. 7, 842 (1981).

    Google Scholar 

  18. Stryker, M. P. in Developmental Neurophysiology (eds Kellaway, P. & Purpura, D.) (Johns Hopkins University, in the press).

  19. LeVay, S. & Stryker, M. P. in Aspects of Developmental Neurobiology (ed. Ferrendelli, J. A.) 83–96 (Soc. Neurosci, 1979).

    Google Scholar 

  20. LeVay, S., Wiesel, T. N. & Hubel, D. H. J. comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  21. Rakic, P. Nature 261, 467–471 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Des Rosiers, M. H. et al. Science 200, 447–449 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Shatz, C. & Kirkwood, P. J. Neurosci. 4, 1378–1397 (1984).

    Article  CAS  Google Scholar 

  24. Dubin, M. W., Stark, L. A. & Archer, S. M. J. Neurosci. 6, 1021–1036 (1986).

    Article  CAS  Google Scholar 

  25. Sur, M., Garraghty, P. E. & Stryker, M. P. Soc. Neurosci. Abstr. 11, 805 (1985).

    Google Scholar 

  26. Sanderson, K. J. J. comp. Neurol. 143, 101–118 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, B., Jacobson, M., Reiter, H. et al. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324, 154–156 (1986). https://doi.org/10.1038/324154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing