Abstract
Chloroplasts contain their own autonomously replicating DNA genome. The majority of proteins present in the chloroplasts are encoded by nuclear DNA, but the rest are encoded by chloroplast DNA and synthesized by the chloroplast transcription–translation machinery1–4. Although the nucleotide sequences of many chloroplast genes from various plant species have been determined, the entire gene organization of the chloroplast genome has not yet been elucidated for any species of plants. To improve our understanding of the chloroplast gene system, we have determined the complete sequence of the chloroplast DNA from a liverwort, Marchantia polymorpha, and deduced the gene organization. As reported here the liverwort chloroplast DNA contains 121,024 base pairs (bp), consisting of a set of large inverted repeats (IRA and IRB, each of 10,058 bp) separated by a small single-copy region (SSC, 19,813 bp) and a large single-copy region (LSC, 81,095 bp). We detected 128 possible genes throughout the liverwort chloroplast genome, including coding sequences for four kinds of ribosomal RNAs, 32 species of transfer RNAs and 55 identified open reading frames (ORFs) for proteins, which are separated by short A+T-rich spacers (Fig. 1). Twenty genes (8 encoding tRNAs, 12 encoding proteins) contain introns in their coding sequences. These introns can be classified as belonging to either group I or group II, as described for mitochondria5. Interestingly, seven of the identified ORFs show high homology to unidentified reading frames (URFs) found in human mitochondria6,7.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bogorad, L. Genetic Engineering Vol. 1 (eds. Setlow, K. & Hollaender, A.) 181–203 (Plenum, New York, 1979).
Whitfeld, P. R. & Bottomley, W. A. Rev. Pl. Physiol. 34, 279–310 (1983).
Palmer, J. D. A. Rev. Genet. 19, 325–354 (1985).
Herrnann, R. G. et al. in Structure and Function of Plant Genomes (eds Ciferri, O. & Dure, L.) 143–153 (Plenum, New York, 1985).
Michel, F. & Dujon, B. EMBO J. 2, 33–38 (1983).
Anderson, S. et al. Nature 290, 457–465 (1981).
Chomyn, A. et al. Nature 314, 592–597 (1985).
Ohyama, K. et al. Molec. gen. Genet. 189, 1–9 (1983).
Yamano, Y., Ohyama, K. & Komano, T. Nucleic Acids Res. 12, 4621–4624 (1984).
Yamano, Y. et al. FEBS Lett. 185, 203–207 (1985).
Crick, F. H. C. Scient. Am. 245(4), 55–62 (1966).
Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).
Ellis, R. J. A. Rev. Pl. Physiol. 32, 111–137 (1981).
Wilbur, W. J. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 80, 726–730 (1983).
Dorne, A.-M., Lescure, A.-M. & Mache, R. Pl. molec. Biol. 3, 83–90 (1984).
Zurawski, G. & Zurawski, S. M. Nucleic Acids Res. 13, 4521–4526 (1985).
Cerretti, D. P. et al. Nucleic Acids Res. 11, 2599–2616 (1983).
Bedwell, D. et al. Nucleic Acids Res. 13, 3891–3903 (1985).
Umesono, K. et al. Nucleic Acids Res. 12, 9551–9565 (1984).
Fukuzawa, H. et al. FEBS Lett. 198, 11–15 (1986).
Yura, T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6803–6807 (1984).
Crouse, E. J., Schmitt, J. M. & Bohnert, H.-J. Pl. molec. Biol. Reptr. 3, 43–89 (1985).
Montandon, P. E. & Stutz, E. Nucleic Acids Res. 11, 5877–5892 (1983).
Shinozaki, K. et al. Molec. gen. Genet. 202, 1–5 (1986).
Bennoun, P. Proc. natn. Acad. Sci. U.S.A. 79, 4352–4356 (1982).
Yasunobu, K. T. & Tanaka, M. Meth. Enzym. 69, 228–238 (1980).
Hearst, J. E. et al. Cell 40, 219–220 (1985).
Widger, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 81, 674–678 (1984).
Higgins, C. F. et al. EMBO J. 4, 1033–1040 (1985).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Sanger, F., Wicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).
Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ohyama, K., Fukuzawa, H., Kohchi, T. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574 (1986). https://doi.org/10.1038/322572a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/322572a0