Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C

Abstract

The upper temperature at which a living system can exist is limited by the hydrolytic breakdown rate of its chemical constituents. The peptide bonds of proteins, the phosphodiester and N-glycosyl bonds in RNA and DNA, and the pyrophosphate and N-glycosyl bonds in nucleotides such as ATP and NAD are among the more important bonds that will undergo hydrolysis. The decomposition of biomolecules via non-hydrolytic pathways such as decarboxylations and dehydrations may also be critical factors in determining this upper temperature limit. Baross and Deming1 recently reported ‘black smoker’ bacteria, which they isolated from deep-sea hydrothermal vents, growing at 250 °C. Here I have attempted to establish the rates for the hydrolysis and/or decomposition of critical biomolecules to determine their ability to exist at this temperature. My results clearly indicate that if these organisms exist, and if their metabolic reactions occur in an aqueous environment, they could not survive at this temperature if they were composed of biomolecules such as proteins and nucleic acids, due to the very rapid rate of decomposition of such molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baross, J. A. & Deming, J. W. Nature 303, 423–426 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Brock, T. D. Thermophilic Microorganisms and Life at High Temperatures (Springer, New York, 1978).

    Book  Google Scholar 

  3. Stitter, K. O. Nature 300, 258–260 (1982).

    Article  ADS  Google Scholar 

  4. Abelson, P. H. Scient. Am. 195, 83–92 (1956).

    Article  Google Scholar 

  5. Vallentyne, J. R. Geochim. cosmochim. Acta 28, 157–188 (1964).

    Article  ADS  CAS  Google Scholar 

  6. Bada, J. L. & Miller, S. L. J. Am. chem. Soc. 92, 2774–2782 (1970).

    Article  CAS  Google Scholar 

  7. Schultz, J., Allison, H. & Grice, M. Biochemistry 1, 694–698 (1962).

    Article  CAS  Google Scholar 

  8. Weber, K. & Osborn, M. J. biol. Chem. 244, 4406–4412 (1969).

    CAS  Google Scholar 

  9. Steinberg, S. M. & Bada, J. L. J. org. Chem. 48, 2295–2298 (1983).

    Article  CAS  Google Scholar 

  10. Bada, J. L. Adv. Chem. Ser. (No. 106), 309–331 (1971).

  11. Liardon, R. & Hurrell, R. F. J. agric. Fd Chem. 31, 432–437 (1983).

    Article  CAS  Google Scholar 

  12. Smith, G. G. & de Sol, B. S. Science 207, 765–767 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Steinberg, S. & Bada, J. L. Science 213, 544–545 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Brown, D. M. & Todd, A. R. J. chem. Soc. 1952, 52–58 (1952).

    Article  Google Scholar 

  15. Lindahl, T. J. biol. Chem. 242, 1970–1973 (1967).

    CAS  PubMed  Google Scholar 

  16. Eigner, J., Boedtker, H. & Michaels, G. Biochim. biophys. Acta 51, 165–168 (1961).

    Article  CAS  Google Scholar 

  17. Tetas, M. & Lowenstein, J. M. Biochemistry 2, 350–357 (1963).

    Article  CAS  Google Scholar 

  18. Sigel, H. & Amsler, P. E. J. Am. chem. Soc. 98, 7390–7400 (1976).

    Article  CAS  Google Scholar 

  19. Ramirez, F., Marecek, J. F. & Szamosi, J. J. org. Chem. 45, 4748–4752 (1980).

    Article  CAS  Google Scholar 

  20. Long, D. A., Truscott, T. G., Cronin, J. R. & Lee, R. G. Trans. Faraday Soc. 67, 1094–1103 (1971).

    Article  CAS  Google Scholar 

  21. Keyes, F. G. in International Critical Tables Vol 3 (ed. Washburn, E. W.) 233 (McGraw-Hill, New York, 1928).

    Google Scholar 

  22. Gonikberg, M. G. Chemical Equilibria and Reaction Rates at High Pressures (National Science Foundation, Washington, DC, 1963).

    Google Scholar 

  23. Laidler, K. J. & Chen, D. Trans. Faraday. Soc. 54, 1026–1033 (1958).

    Article  CAS  Google Scholar 

  24. David, H. G., Hamann, S. D. & Lake, S. J. Aust. J. Chem. 8, 285–288 (1955).

    Article  CAS  Google Scholar 

  25. Williams, E. G., Perrin, M. W. & Gibson, R. O. Proc. R. Soc. A154, 684–703 (1936).

    ADS  CAS  Google Scholar 

  26. LeNoble, W. J., Srivastava, S., Breslow, R. & Trainor, G. J. Am. chem. Soc. 105, 2745–2748 (1983).

    Article  CAS  Google Scholar 

  27. Fox, S. W. The Origins of Prebiological Systems and of Their Molecular Matrices (Academic, New York, 1965).

    Google Scholar 

  28. Trent, J. D., Chastain, R. A. & Yayanos, A. A. Nature 307, 737–740 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Bates, R. G., Pinching, G. D. & Smith, E. R. Bur. Stand. J. Res. 45, 418–429 (1950).

    Article  CAS  Google Scholar 

  30. Stene, S. Recl. Trav. chim. Pays-Bas Belg. 49, 1133–1145 (1930).

    Article  CAS  Google Scholar 

  31. Ramos, D. L. & Schoffstall, A. M. J. Chromatogr. 261, 83–93 (1983).

    Article  CAS  Google Scholar 

  32. Sasaki, Y. & Hashizume, T. Analyt. Biochem. 16, 1–19 (1966).

    Article  CAS  Google Scholar 

  33. Sweeley, C. C., Bentley, R., Makita, M. & Wells, W. W. J. Am. chem. Soc. 85, 2497–2507 (1963).

    Article  CAS  Google Scholar 

  34. Hammerstedt, R. H. Analyt. Biochem. 52, 449–455 (1973).

    Article  CAS  Google Scholar 

  35. Franke, W. W., Krien, S. & Brown, R. M. Jr Histochemie 19, 162–164 (1969).

    Article  CAS  Google Scholar 

  36. Poolswat, S. S. Proc. EMSA 31, 364–365 (1973).

    Google Scholar 

  37. Watson, M. L. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Article  CAS  Google Scholar 

  38. Venable, J. H. & Coggeshall, R. J. Cell Biol. 25, 407–408 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature 310, 430–432 (1984). https://doi.org/10.1038/310430a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310430a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing