Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neutrino tomography: Tevatron mapping versus the neutrino sky

Abstract

Volkova and Zatsepin1 were the first to propose the use of a ‘Tevatron’ (a high-energy accelerator at 1012 eV or TeV energies) to beam neutrinos v through the Earth to a mobile detector and obtain X rays of the planet's interior. The basic idea has been contingent for years on the opacity of the Earth to neutrinos at appropriate energies (10–103 TeV). This depends significantly on the neutrino–nucleon scattering cross-section, which in turn depends on the existence of an intermediate vector boson2–4, the acceptance of what physicists refer to as the standard model5–7 in high-energy physics, and finally the mass MW of the intermediate W boson in that model. The announcement by CERN of the W boson mass8,9 (MW 80 GeV) permits us now to draw certain conclusions. Although we shall demonstrate that neutrino tomography at planetary densities is feasible, tomographic scanning schemes appear unrealistic in several respects. We shall address two sources of neutrinos for tomographic mapping of the densities, the Earth-based Tevatron and the neutrino sky.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Volkova, L. V. & Zatsepin, G. T. Acad. Sci. U.S.S.R., Bull. Phys. Ser. 38, 151–154 (1974).

    Google Scholar 

  2. Lee, T. D. & Yang, C. N. Phys. Rev. Lett. 4, 307–311 (1960).

    Article  ADS  CAS  Google Scholar 

  3. Schwinger, J. Ann. Phys. 2, 407–434 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bahcall, J. N. & Frautschi, S. C. Phys. Rev. 136, B1547–B1552 (1964).

    Article  ADS  Google Scholar 

  5. Salam, A. Science 210, 723–732 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Weinberg, S. Science 210, 1212–1218 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Glashow, S. Science 210, 1319–1323 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  8. Arnison, G. et al. Phys. Lett. 122B, 103–116 (1983).

    Article  Google Scholar 

  9. Banner, M. et al. Phys. Lett. 122B, 476–485 (1983).

    Article  Google Scholar 

  10. Cormack, A. M. Science 209, 1482–1486 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Hounsfield, G. N. Science 210, 22–28 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Brooks, R. A. & DiChiro, G. Phys. med. Biol. 21, 689–732 (1976).

    Article  CAS  Google Scholar 

  13. Kak, A. C. Proc. IEEE 67, 1245–1272 (1979).

    Article  Google Scholar 

  14. Wilson, T. L. in Particles & Fields—1982 (eds Caswell, W. E. & Snow, G. A.) (American Institute of Physics Conf. Proc. No. 98, New York, 1983).

    Google Scholar 

  15. Donaldson, R. et al. (eds) Proc. 1982 DPF Summer Study On Elementary Particle Physics & Future Facilities, Snowmass, Colorado (American Physical Society, New York, 1983).

  16. Roberts, A. et al. (eds) Proc. 1978 int. DUMAND (Deep Underwater Muon and Neutrino Detector) Symp. (Fermilab, Batavia, 1979).

  17. Stenger, V. J. (ed.) Proc. 1980 int. DUMAND Symp. (University of Hawaii, 1981).

  18. Stenger, V. J., Learned, J. G., Peterson, V. Z. & Roberts, A. in Neutrino '81 Vol. 2 (eds Cence, R. J. et al.) 233–239 (University of Hawaii, 1981).

    Google Scholar 

  19. Herman, G. T. (ed.) Image Reconstruction from Projections (Springer, Berlin, 1979).

    MATH  Google Scholar 

  20. Herman, G. T. & Natterer, F. (eds) Mathematical Aspects of Computerized Tomography (Springer, Berlin, 1981).

    MATH  Google Scholar 

  21. Bracewell, R. N. & Riddle, A. C. Astrophys. J. 150, 427–434 (1967).

    Article  ADS  Google Scholar 

  22. Burke, B. F. Astronautics and Aeronautics 20, (10), 44–52 (1982).

    ADS  Google Scholar 

  23. Fomalont, E. Proc. IEEE 69, 1211–1218 (1973).

    Article  ADS  Google Scholar 

  24. Radon, J. Ber. Verh. sächs. Akad. Wiss. 69, 262–277 (1917).

    Google Scholar 

  25. Cramér, H. & Wold, H. J. Lond. math. Soc. 11, 290–294 (1936).

    Article  Google Scholar 

  26. Soroko, L. M. Sov. J. Particles & Nuclei 12, 303–319 (1981).

    MathSciNet  Google Scholar 

  27. Herman, G. T. & Naparstek, A. SIAM J. appl. Math. 33, 511–533 (1977).

    Article  MathSciNet  Google Scholar 

  28. Herman, G. T., Lakshminarayanan, A. & Naparstek, A. Comput. Biol. Med. 6, 259–271 (1976).

    Article  CAS  Google Scholar 

  29. Roland, S. W. in Image Reconstruction from Projections (ed. Herman, G. T.) 9–80 (Springer, Berlin, 1979).

    Book  Google Scholar 

  30. Nedialkov, I. P. Acad. Bulgarian Sci. 34, 1495–1498 (1981).

    Google Scholar 

  31. De Rújula, A., Glashow, S. L., Wilson, R. R. & Charpak, G. Phys. Rep. 99, (6), 341–396 (1983).

    Article  ADS  Google Scholar 

  32. Press, F. Science 160, 1218–1221 (1968).

    Article  ADS  CAS  Google Scholar 

  33. Dziewonski, A. M. & Andersen, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  34. Ringwood, A. E. Composition and Petrology of the Earth's Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  35. Knopoff, L. & MacDonald, G. J. F. Geophys. J. 1, 284–297 (1958).

    Google Scholar 

  36. Birch, F. Phys. Earth planet. Inter. 1, 141–147 (1968).

    Article  ADS  CAS  Google Scholar 

  37. Liu, L. Phys. Earth planet. Inter. 8, 56–62 (1974).

    Article  ADS  CAS  Google Scholar 

  38. Aguilar-Benitez, M. et al. Phys. Lett. 111B, 1–294 (April 1982).

    Article  Google Scholar 

  39. Kelley, R. L. et al. Rev. mod. Phys. 52, (2), PII, S1–S286 (1980).

    Article  ADS  Google Scholar 

  40. Barish, B. C. et al. Phys. Rev. Lett. 39, 741–744 (1977).

    Article  ADS  CAS  Google Scholar 

  41. de Groot, J. G. H. et al. Z. Phys. C1, 143–162 (1979).

    CAS  Google Scholar 

  42. Bjorken, J. D. Phys. Rev. 179, 1547–1553 (1969).

    Article  ADS  Google Scholar 

  43. Perkins, D. H. Rep. Prog. Phys. 40, 409–481 (1977).

    Article  ADS  CAS  Google Scholar 

  44. Barish, B. C. et al. Phys. Rev. Lett. 31, 180–183 (1973).

    Article  ADS  CAS  Google Scholar 

  45. Llewellyn-Smith, C. H. Phys. Rep. 3 C, 261–379 (1972).

    Article  ADS  Google Scholar 

  46. Bjorken, J. D. & Paschos, E. A. Phys. Rev. D1, 3151–3160 (1970).

    ADS  Google Scholar 

  47. von Gehlen, G. Nuovo Cim. 30, 859–877 (1963).

    Article  ADS  Google Scholar 

  48. Chen, H. H. Nuovo Cim. 64, 585–612 (1970).

    Article  ADS  Google Scholar 

  49. Brown, R. W. & Smith, J. Phys. Rev. D3, 207–222 (1971).

    ADS  Google Scholar 

  50. Brown, R. W., Hobbs, R. H. & Smith, J. Phys. Rev. D4, 794–813 (1971).

    ADS  Google Scholar 

  51. Brown, R. W. et al. Phys. Rev. D6, 3273–3292 (1972).

    CAS  Google Scholar 

  52. Halprin, A. & Gaisser, T. in 15th int. Cosmic Ray Conf. Vol. 6, 265–269 (Bulgarian Academy of Sciences, Plovdiv, 1977).

    Google Scholar 

  53. Halprin, A. in Proc. 1978 int. DUMAND Symp. Vol. 2 (eds Roberts, A. et al.) 27–40 (Fermilab, Batavia, 1979).

    Google Scholar 

  54. Brown, R. W. et al. in Proc. 1978 int. DUMAND Symp. Vol. 2 (eds Roberts, A. et al.) 13–26 (Fermilab, Batavia, 1979).

    Google Scholar 

  55. Brown, R. W. & Stecker, F. W. Phys. Rev. D26, 373–383 (1982).

    ADS  CAS  Google Scholar 

  56. Buras, A. & Gaemers, K. Nucl. Phys. B132, 249–267 (1978).

    Article  ADS  Google Scholar 

  57. Margolis, S. H., Schramm, D. N. & Silberberg, R. Astrophys. J. 221, 990–1002 (1978).

    Article  ADS  CAS  Google Scholar 

  58. Eichler, D. Astrophys. J. 232, 106–112 (1979).

    Article  ADS  CAS  Google Scholar 

  59. Stecker, F. W. Astrophys. J. 228, 919–927 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, T. Neutrino tomography: Tevatron mapping versus the neutrino sky. Nature 309, 38–42 (1984). https://doi.org/10.1038/309038a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309038a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing