Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications of 1016 eV γ rays from Cyg X-3

Abstract

Samorski and Stamm1 have reported and Lloyd-Evans et al.2 have recently confirmed the detection of high-energy quanta, presumably γ rays, with energies E>2×1015 eV from Cygnus X-3. These ultra-high energy (UHE) γ rays were detected with extensive air shower arrays and included four events with E>1016 eV. Temporal analyses1,2 of the events indicate that the flux is modulated with a 4.8-h period and is sharply pulsed. Here (1) we discuss the implications of these γ-ray detections and suggest that autocorrelating the air shower data may be the best way to determine the intrinsic width of the γ-ray pulses; (2) we argue that the radiating particles are accelerated by a pulsar and that if they are accelerated according to any pulsar mechanism we know of, then they must be ions; (3) we note that if the ions are accelerated to 1016 eV by a large amplitude Deutsch wave, then the gravitational wave luminosity Lg should exceed that of the Crab pulsar by a factor of 5×105, and the spin-down time should be 80 yr (requiring a truly remarkable object); and (4) we show that the ions can be accelerated in the near zone but only if, contrary to the standard view, pair production does not greatly reduce the vacuum potential drop in the near zone. We note that near-zone acceleration could be confirmed by detection of curvature radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Samorski, M. & Stamm, W. Astrophys. J. Lett. 268, L17–L22 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Lloyd-Evans, J. et al. Nature 305, 784–787 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Nesphore, Yu. I. et al. Astrophys. Space Sci. 61, 349–355 (1979).

    Article  ADS  Google Scholar 

  4. Danaher, S., Fegan, D., Porter, N. & Weekes, T. Nature 289, 568–569 (1981).

    Article  ADS  Google Scholar 

  5. Lamb, R., Godfrey, C., Wheaton, W. & Turner, T. Nature 296, 543–544 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Lamb, R., Fichtel, C., Hartman, R., Kniffen, D. & Thomson, D. Astrophys. J. Lett. 212, L63–L66 (1977).

    Article  ADS  Google Scholar 

  7. Parsignault, D., Grindlay, J., Gursky, H. & Tucker, W. Astrophys. J. 218, 232–242 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Becklin, E. et al. Nature 245, 302–304 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Bhat, C., Sparu, M. & Kaul, C. Nature 288, 146–149 (Corrigendum: 291, 168) (1980).

    Article  ADS  CAS  Google Scholar 

  10. Fegan, D. J. & Danaher, S. Proc. 17th int. Cosmic Ray Conf. 1, 31–33 (1981).

    ADS  Google Scholar 

  11. Milgrom, M. & Pines, D. Astrophys. J. 220, 272–278 (1982).

    Article  ADS  Google Scholar 

  12. Vestrand, W. T. & Eichler, D. Astrophys. J. 261, 251–258 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Gunn, J. E. & Ostriker, J. P. Phys. Rev. Lett. 22, 728–731 (1969).

    Article  ADS  Google Scholar 

  14. Hertz, P., Joss, P. & Rappaport, S. Astrophys. J. 224, 614–624 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Vestrand, W. T. Astrophys. J. 271, 304–314 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Arons, J. in IAU Conf. No. 94, 175–204 (Reidel, Dordrecht, 1981).

  17. Ruderman, M. A. & Sutherland, P. G. Astrophys. J. 196, 51–72 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Sturrock, P. A. Astrophys. J. 164, 529–556 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Boone, J. et al. preprint University of Utah (1983).

  20. Dzikowski, T., Gawin, J., Grochalska, B., Wasilewski, A. & Wdowczych, J. Proc. 17th int. Cosmic Ray Conf. 1, 8–12 (1981).

    ADS  Google Scholar 

  21. Thomson, D. E. Sci. News 123, 405 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, D., Vestrand, W. Implications of 1016 eV γ rays from Cyg X-3. Nature 307, 613–614 (1984). https://doi.org/10.1038/307613a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307613a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing