Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light-activated drug confirms a mechanism of ion channel blockade

Abstract

A VARIETY of mechanisms underlie the pharmacological blockade of membrane excitability. Some drugs seem to reduce the frequency at which ion channels open; a good example is the effect of curare on acetylcholine receptor channels at normal resting potentials. Another sort of mechanism may account for the action of many local anaesthetics and related drugs containing charged ammonium groups. It is postulated that such molecules block transmembrane currents as they bind to sites within open ion channels, much like a plug in a drain, with the important difference that the events occur on a millisecond time scale. This model, which we shall call ‘open-channel blockade’, was first applied to the effect of internal tetraethylammonium ions on K+ channels in squid axon1 and more recently to similar actions of local anaesthetics on acetylcholine receptor channels2–4 and on electrically excitable Na+ channels5. (Curare seems to exert an additional open-channel blockade at high negative potentials6,7.) The concept of open-channel blockade would receive direct experimental support from the demonstration that the blockade is exerted even if the blocking molecule is not bound to the channel (or indeed is not present at all) until after the channel opens. Such a demonstration is made possible by a drug that (1) blocks acetylcholine receptor channels in Electrophorus electroplaque, and (2) is created, in less than a millisecond, by a flash of light.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Armstrong, C. M. J. gen. Physiol. 50, 491–503 (1966).

    Article  CAS  Google Scholar 

  2. Steinbach, A. B. J. gen. Physiol. 52, 144–161 (1968).

    Article  CAS  Google Scholar 

  3. Steinbach, A. B. J. gen. Physiol. 52, 162–180 (1968).

    Article  CAS  Google Scholar 

  4. Adams, P. R. J. Physiol., Lond., 246, 61–63P (1975).

    Google Scholar 

  5. Strichartz, G. R. J. gen. Physiol. 62, 37–57 (1973).

    Article  CAS  Google Scholar 

  6. Katz, B. & Miledi, R. Proc. R. Soc. B203, 119–133 (1978).

    ADS  CAS  Google Scholar 

  7. Colquhoun, D., Dreyer, F. & Sheridan, R. E. J. Physiol., Lond. (in the press).

  8. Bieth, J., Wassermann, D., Vratsanos, S. M. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 66, 850–854 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Sheridan, R. E. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 72, 3496–3500 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Sheridan, R. E. & Lester, H. A. J. gen. Physiol. 70, 187–219 (1977).

    Article  CAS  Google Scholar 

  11. Lester, H. A., Koblin, D. D. & Sheridan, R. E. Biophys. J. 21, 181–194 (1978).

    Article  CAS  Google Scholar 

  12. Furukawa, T. Jap. J. Physiol. 7, 199–212 (1957).

    Article  CAS  Google Scholar 

  13. Lester, H. A., Changeux, J.-P. & Sheridan, R. E. J. gen. Physiol. 65, 797–816 (1975).

    Article  CAS  Google Scholar 

  14. Beam, K. G. J. Physiol., Lond. 258, 279–300 (1976).

    Article  CAS  Google Scholar 

  15. Adams, P. R. J. Physiol., Lond. 268, 291–318 (1977).

    Article  CAS  Google Scholar 

  16. Neher, E. & Steinbach, J. H. J. Physiol., Lond. 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  17. Koblin, D. D. & Lester, H. A. Molec. Pharmac. (in the press).

  18. Nass, M. M., Lester, H. A. & Krouse, M. E. Biophys. J. 24, 135–160 (1978).

    Article  CAS  Google Scholar 

  19. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 151–171 (1972).

    Article  CAS  Google Scholar 

  20. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 173–197 (1972).

    Article  CAS  Google Scholar 

  21. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  Google Scholar 

  22. Wathey, J. C., Nass, M. M. & Lester, H. A. Biophys. J. 27, 145–164 (1979).

    Article  CAS  Google Scholar 

  23. Katz, B. & Miledi, R. J. Physiol., Lond. 230, 707–717 (1973).

    Article  CAS  Google Scholar 

  24. Rosenberry, T. in Adv. Enzymol. 43, 103–218 (1975).

    Google Scholar 

  25. Deal, W. J., Erlanger, B. F. & Nachmansohn, D. Proc. natn. Acad. Sci. U.S.A. 64, 1230–1234 (1969).

    Article  ADS  CAS  Google Scholar 

  26. Bartels, E., Wassermann, N. H. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 68, 1820–1823 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Erlanger, B. F. A. Rev. Biochem. 45, 267–283 (1976).

    Article  CAS  Google Scholar 

  28. Lester, H. A. & Chang, H. W. Nature 266, 373–374 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Wassermann, N. H., Bartels, E. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 76, 256–259 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LESTER, H., KROUSE, M., NASS, M. et al. Light-activated drug confirms a mechanism of ion channel blockade. Nature 280, 509–510 (1979). https://doi.org/10.1038/280509a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280509a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing