Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron Correlations and Solar Neutrino Counts

Abstract

EXPERIMENTS to detect the neutrino flux from the Sun could be used to test the basic hypotheses concerning the internal constitution of the Sun and the nuclear fusion reactions believed to be occurring in its interior. The measurements of Davis, Harmer and Hoffmann1 give an upper bound on the neutrino counting rate which is approximately half of the theoretical rate calculated by Bahcall, Bahcall and Shaviv2, and an order of magnitude smaller than theoretical rates obtained by other authors. Before the discrepancy between theory and experiment can be accepted as requiring a radical change in the theory of stellar structure, it is first necessary to reduce the uncertainties and poor approximations contained in the “constitutive relations” of the theory; that is, in the equations for the nuclear reaction rates, the pressure and the opacity3, each expressed as a function of density, temperature and chemical composition of the medium. In current tables4 of solar opacity, the contribution from the scattering of radiation by free electrons is calculated under the unjustified assumption that the plasma of the solar interior can be treated as a perfect classical gas, and hence that the scattering cross-section is given simply by the classical frequency-independent Thomson cross-section Neσt, for Ne independent electrons in the plasma. This report shows that corrections to σt produced by classical5–7 and quantum6 electron correlations reduce the electron-scattering opacity in the core of the Sun by approximately one-third, and that this leads to a significant reduction in the theoretical neutrino flux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, R., Harmer, D. S., and Hoffmann, K. C., Phys. Rev. Lett., 20, 1205 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Bahcall, J. N., Bahcall, N. A., and Shaviv, G., Phys. Rev. Lett., 20, 1209 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Eddington, A. S., The Internal Constitution of the Stars, sec. 77–80 (Cambridge University Press, 1926; Dover, 1959); Cox, A. N., in Stellar Structure (edit. by Aller, L. H., and Mclaughlin, D. B.) (Univ. Chicago Press, 1965).

    MATH  Google Scholar 

  4. Cox, A. N., Stewart, J. N., and Eilers, D. D., Astrophys. J. Suppl. Ser., 11, 1 (1965).

    Article  ADS  CAS  Google Scholar 

  5. Kegel, W. H., Zeit. f. Astrophys., 61, 232 (1965).

    ADS  Google Scholar 

  6. Diesendorf, M. O., and Ninham, B. W., Astrophys. J., 156, 1069 (1969).

    Article  ADS  Google Scholar 

  7. Watson, W. D., Astrophys. J., 158, 303 (1969).

    Article  ADS  Google Scholar 

  8. Trubnikov, B. A., and Elesin, V. F., J. Exp. Theor. Phys. (USSR), 47, 1279 (1964); trans. in Sov. Phys. JETP, 20, 866 (1965).

    Google Scholar 

  9. Diesendorf, M. O., and Ninham, B. W., J. Math. Phys., 9, 745 (1968).

    Article  ADS  Google Scholar 

  10. DeWitt, H. E., J. Nucl. Energy, Part C: Plasma Phys., 2, 27 (1961).

    Article  Google Scholar 

  11. Davies, B., and Storer, R. G., Phys. Rev., 171, 150 (1968).

    Article  ADS  Google Scholar 

  12. London, F., J. Chem. Phys., 11, 203 (1943); Placzek, G., Proc. Second Berkeley Symp. on Math. Stat. and Prob., 581 (1950).

    Article  ADS  CAS  Google Scholar 

  13. Schwarzchild, M., Structure and Evolution of the Stars (Princeton University Press, 1958; Dover, 1965).

    Book  Google Scholar 

  14. Bahcall, J. N., Bahcall, N. S., and Ulrich, R. K., Astrophys. J., 156, 559 (1969).

    Article  ADS  Google Scholar 

  15. Watson, W. D., Astrophys. J., 157, 375 (1969).

    Article  ADS  Google Scholar 

  16. Carson, T. R., Mayers, D. F., and Stibbs, D. W. N., Mon. Not. Roy. Astron. Soc., 140, 483 (1968) ; Carson, T. R., and Hollingsworth, H. M., Mon. Not. Roy. Astron. Soc., 141, 77 (1968).

    Article  ADS  Google Scholar 

  17. Ross, J. E., Nature, 225, 610 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Garz, T., Kock, M., Richter, J., Bashek, B., Holweger, H., and Unsǒld, A., Nature, 223, 1254 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Watson, W. D., Astrophys. J. Lett., 158, L189 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Rouse, C. A., Nature, 224, 1009 (1969).

    Article  ADS  Google Scholar 

  21. DeWitt, H. E., J. Math. Phys., 3, 1216 (1962); Stephen, M. J., Proc. Roy, Soc., A, 265, 215 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DIESENDORF, M. Electron Correlations and Solar Neutrino Counts. Nature 227, 266–267 (1970). https://doi.org/10.1038/227266a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/227266a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing