Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Desorption–ionization mass spectrometry on porous silicon

Abstract

Desorption mass spectrometry has undergone significant improvements since the original experiments were performed more than 90 years ago1. The most dramatic change occurred in the early1980s with the introduction of an organic matrix2,3,4 to transfer energy to the analyte. This reduces ion fragmentation but also introduces background ions from the matrix. Here we describe a matrix-free strategy forbiomolecular mass spectrometry based on pulsed-laser desorption–ionization from a porous silicon5 surface. Our method uses porous silicon to trap analytes deposited on the surface, and laser irradiation to vaporize and ionize them. We show that the method works at femtomole and attomole levels of analyte, and induces little or no fragmentation, in contrast to what is typically observed with other such approaches6,7,8,9,10,11. The ability to perform these measurements without a matrix3,4,12,13 also makes itmore amenable to small-molecule analysis. Chemical14 and structural15 modification of the porous silicon has enabled optimization of the ionization characteristics of the surface. Our technique offers good sensitivity as well as compatibility with silicon-based microfluidics and microchip technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration for the DIOS-MS experiments.
Figure 2: Examples of mass spectral data obtained with DIOS.
Figure 3: Analysis of WIN antiviral drug (500 fmol) using different desorption/ionization techniques.
Figure 4: DIOS mass spectra of des-arg-bradykinin using small quantities of sample and in the presence of salt.

Similar content being viewed by others

References

  1. Thomson, J. J. Rays of positive electricity. Phil. Mag. 20, 752–767 (1910).

    Article  Google Scholar 

  2. Liu, L. K., Busch, K. L. & Cooks, R. G. Matrix-assisted secondary ion mass spectra of biological compounds. Anal. Chem. 53, 109–113 (1981).

    Article  CAS  Google Scholar 

  3. Barber, M., Bordoli, R. S., Sedgwick, R. D. & Tyler, A. N. Fast-atom bombardment of solids as an ion source in mass spectroscopy. Nature 293, 270–275 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular mass exceeding 10,000 daltons Anal. Chem. 60, 2299–2301 (1988).

    Article  CAS  Google Scholar 

  5. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Zenobi, R. Laser-assisted mass spectrometry. Chimia 51, 801–803 (1997).

    CAS  Google Scholar 

  7. Zhan, Q., Wright, S. J. & Zenobi, R. Laser desorption substrate effects. J. Am. Soc. Mass Spectr. 8, 525–531 (1997).

    Article  CAS  Google Scholar 

  8. Hrubowchak, D. M., Ervin, M. H., Wood, M. C. & Winograd, N. Detection of biomolecules on surfaces using ion-beam-induced desorption and multiphoton resonance ionization. Anal. Chem. 63, 1947–1953 (1991).

    Article  CAS  Google Scholar 

  9. Varakin, V. N., Lunchev, V. A. & Simonov, A. P. Ultraviolet-laser chemistry of adsorbed dimethylcadmium molecules. High En. Chem. 28, 406–411 (1994).

    Google Scholar 

  10. Wang, S. L., Ledingham, K. W. D., Jia, W. J. & Singhal, R. P. Studies of silicon nitride (Si3N4) using laser ablation mass spectrometry. Appl. Surf. Sci. 93, 205–210 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Posthumus, M. A., Kistemaker, P. G., Meuzelaar, H. L. C. & Ten Noever de Brauw, M. C. Laser desorption–mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 50, 985–991 (1978).

    Article  CAS  Google Scholar 

  12. Macfarlane, R. D. & Torgerson, D. F. Californium-252 plasma desorption mass spectroscopy. Science 191, 920–925 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Siuzdak, G. in Mass Spectrometry for Biotechnology 162 (Academic, San Diego, (1996).

    Google Scholar 

  14. Buriak, J. M. & Allen, M. J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J. Am. Chem. Soc. 120, 1339–1340 (1998).

    Article  CAS  Google Scholar 

  15. Cullis, A. G., Canham, L. T. & Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Hillenkamp, F., Karas, M., Beavis, R. C. & Chait, B. T. Matrix-assisted laser desorption ionization mass spectrometry of biopolymers. Anal. Chem. 63, A1193–A1202 (1991).

    Article  Google Scholar 

  17. Benninghoven, A., Rüdenauer, F. G. & Werner, H. W. (eds) Secondary Ion Mass Spectrometry 1227 (Wiley, New York, (1987).

    Google Scholar 

  18. Amato, G. & Rosenbauer, M. in Optoelectronic Properties of Semiconductors and Superlattices (eds Amato, G., Delerue, C. & Bardeleben, H.-J.v.) 3–52 (Gordon and Breach, Amsterdam, (1997).

    Google Scholar 

  19. Sailor, M. J. & Lee, E. J. Surface chemistry of luminescent silicon nanocrystallites. Adv. Mater. 9, 783–793 (1997).

    Article  CAS  Google Scholar 

  20. Stewart, M. P. & Buriak, J. M. Photopatterned hydrosilylation on porous silicon. Angew. Chem. Int. Edn 37, 3257–3261 (1998).

    Article  CAS  Google Scholar 

  21. Doan, V. V. & Sailor, M. J. Photolithographic fabrication of micron-dimension porous Si structures exhibiting visible luminescence. Appl. Phys. Lett. 60, 619–620 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Lidgard, R. & Duncan, M. W. Utility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of low molecular weight compounds. Rapid Commun. Mass Spectr. 9, 128–132 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Knochenmuss, R., Dubois, F., Dale, M. J. & Zenobi, R. The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectr. 10, 871–877 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Canham, L. T. in Properties of Porous Silicon (ed. Canham, L. T.) 83–88 (Institution of Electrical Engineers, London, (1997).

    Google Scholar 

  25. Hérino, R. in Properties of Porous Silicon (ed. Canham, L. T.) 89–96 (Institution of Electrical Engineers, London, (1997).

    Google Scholar 

  26. Ogata, Y. H., Kato, F., Tsuboi, T. & Sakka, T. J. Changes in the environment of hydrogen in porous silicon with thermal annealing. Electrochem. Soc. 145, 2439–2444 (1998).

    Article  CAS  Google Scholar 

  27. Canham, L. T. in Properties of Porous Silicon (ed. Canham, L. T.) 154–157 (Institution of Electrical Engineers, London, (1997).

    Google Scholar 

  28. Canham, L. T. in Properties of Porous Silicon (ed. Canham, L. T.) 44–50 (Institution of Electrical Engineers, London, (1997).

    Google Scholar 

  29. O'Donnell, M. J., Tang, K., Koster, H. & Smith, C. L. High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry. Anal. Chem. 69, 2438–2443 (1997).

    Article  CAS  Google Scholar 

  30. Schmuki, P., Erickson, L. E. & Lockwood, D. J. Light emitting micropatterns of porous Si created at surface defects. Phys. Rev. Lett. 80, 4060–4063 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Boydston, Z. Shen, R. G. Cooks and M. Duncan for their comments, T.Hollenbeck for suggesting the acronym DIOS, K. Harris for his initial analyses of porous silicon surfaces, and M. P. Stewart and T. Geders for preparing oxidized and p-type porous silicon samples. G.S. is grateful for partial funding by an NIH grant; J.M.B. thanks Purdue University for support and the Camille and Henry Dreyfus Foundation for a New Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian M. Buriak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Buriak, J. & Siuzdak, G. Desorption–ionization mass spectrometry on porous silicon. Nature 399, 243–246 (1999). https://doi.org/10.1038/20400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20400

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing