Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Luttinger-liquid behaviour in carbon nanotubes

Abstract

Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong perturbations. The resulting system, known as a Luttinger liquid, is predicted to be distinctly different from its two- and three-dimensional counterparts1. For example, tunnelling into a Luttinger liquid at energies near the Fermi level is predicted to be strongly suppressed, unlike in two- and three-dimensional metals. Experiments on one-dimensional semiconductor wires2, 2,3 have been interpreted by using Luttinger-liquid theory, but an unequivocal verification of the theoretical predictions has not yet been obtained. Similarly, the edge excitations seen in fractional quantum Hall conductors are consistent with Luttinger-liquid behaviour4, 5, but recent experiments failed to confirm the predicted relationship between the electrical properties of the bulk state and those of the edge states6. Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires7,8,9,10 that may exhibit Luttinger-liquid behaviour11, 12. Here we present measurements of the conductance of bundles (‘ropes’) of SWNTs as a function of temperature and voltage that agree with predictions for tunnelling into a Luttinger liquid. In particular, we find that the conductance and differential conductance scale as power laws with respect to temperature and bias voltage, respectively, and that the functional forms and the exponents are in good agreement with theoretical predictions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two-terminal linear-response conductance G versus gate voltage Vgfor a bulk-contacted metallic nanotube rope at a variety of temperatures.
Figure 2: Conductance G plotted against temperature T for individual nanotube ropes.
Figure 3: The differential conductance dI/dV measured at various temperatures.

Similar content being viewed by others

References

  1. Fisher, M. P. A. & Glazman, A. Mesoscopic Electron Transport (Kluwer Academic, Boston, (1997)).

    Google Scholar 

  2. Tarucha, S., Honda, T. & Saku, T. Reduction of quantized conductance at low temperatures observed in 2 to 10 µm-long quantum wires. Solid State Commun. 94, 413 –418 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Yacoby, A. et al. Nonuniversal conductance quantization in quantum wires. Phys. Rev. Lett. 77, 4612–4615 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Milliken, F. P., Umbach, C. P. & Webb, R. A. Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun. 97, 309–313 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 ( 1996).

    Article  ADS  CAS  Google Scholar 

  6. Grayson, M. et al. Continuum of chiral Luttinger liquids at the fractional quantum Hall edge. Phys. Rev. Lett. 80, 1062– 1065 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Wildoer, J. W. G. et al. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Odom, T. W., Huang, J., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 ( 1997).

    Article  CAS  Google Scholar 

  10. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Egger, R. & Gogolin, A. Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79, 5082–5085 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Kane, C., Balents, L. & Fisher, M. P. A. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086 –5089 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Cobden, D. H. et al. Spin splitting and even–odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681– 684 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

    Article  ADS  CAS  Google Scholar 

  15. Grabert, H. & Devoret, M. H. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, ( 1992)).

    Book  Google Scholar 

  16. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Bezryadin, A., Verschueren, A. R. M., Tans, S. J. & Dekker, C. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4036– 4039 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Matveev, K. A. & Glazman, L. I. Coulomb blockade of tunneling into a quasi-one-dimensional wire. Phys. Rev. Lett. 70, 990–993 ( 1993).

    Article  ADS  CAS  Google Scholar 

  19. Fisher, M. P. A. & Dorsey, A. Dissipative quantum tunneling in a biased double-well system at finite temperatures. Phys. Rev. Lett. 54, 1609–1612 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Grabert, H. & Weiss, U. Quantum tunneling rates for asymmetric double-well systems with ohmic dissipation. Phys. Rev. Lett. 54, 1605–1608 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Komnik, A. & Egger, R. Nonequilibrium transport for crossed Luttinger liquids. Phys. Rev. Lett. 80, 2881–2884 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Louie, M. Cohen, D-h. Lee, A. Zettl and A. Georges for discussions. This work was supported by DOE (Basic Energy Sciences, Materials Sciences Division, the sp2 Materials Initiative). L.B. was supported by the NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockrath, M., Cobden, D., Lu, J. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999). https://doi.org/10.1038/17569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17569

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing