Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaling of transition temperature and CuO2 plane buckling in a high-temperature superconductor

Abstract

A characteristic feature of the high-temperature superconductors is the existence of a chemical composition that gives a maximum transition temperature, Tc, separating the so-called under-doped and over-doped regimes1, 2. This behaviour is thought to be universal for high-temperature superconductors. In practice, there are only a few high- Tc compounds for which the composition can be varied continuously throughout the entire doping range. Here we report a study of correlations between structure and Tc in a compound with the ‘123’ structure in which both the under-doped and over-doped regimes can be accessed. We observe a clear scaling between Tc and the buckling of the copper oxide planes; both go through a maximum at the same oxygen composition (and hence doping level), so implying a common origin. Previous work has shown that, for a fixed chemical composition, increased CuO2 plane buckling lowers the transition temperature3,4,5,6,7,8,9,10,11. Thus the observation of a maximum in the buckling at the maximum Tc indicates that, as the composition is changed to increase Tc, there is a structural response that competes with superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic susceptibility data for representative under-doped (−), optimally doped (o), and over-doped (+) samples.
Figure 2: Best-fit Rietveld refinement profile showing observed (+ symbols) andcalculated (line) intensities.
Figure 3: Variation of lattice parameters and apical copper–oxygen bond length with total oxygen content.
Figure 4: Variation of Tc and buckling angle of the CuO2 plane with total oxygen content.

Similar content being viewed by others

References

  1. Whangbo, M.-H., Kang, D. B. & Torardi, C. C. Correlations between the superconducting transition temperatures and the in-plane copper-oxygen bond lengths in the copper-oxide superconductors. Physica C 158, 371– 376 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Zhang, H. & Sato, H. Universal relationship between T cand the hole content in p-type cuprate superconductors. Phys. Rev. Lett. 70, 1697–1699 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Büchner, B., Breuer, M., Freimuth, A. & Kampf, A. P. Critical buckling for the disappearance of superconductivity in rare-earth-doped La2−x SrxCuO4. Phys. Rev. Lett. 73, 1841–1844 (1994).

    Article  ADS  Google Scholar 

  4. Yamada, Y. & Ido, M. Pressure effects on superconductivity and structural phase transitions in La2−xMxCuO 4 (M = Ba,Sr). Physica C 203, 240– 246 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Takahashi, H. et al. Structural effects of hydrostatic pressure in orthorhombic La2−xSrxCuO4. Phys. Rev. B 50, 3221–3229 ( 1994).

    Article  ADS  CAS  Google Scholar 

  6. Dabrowski, B. et al. Dependence of superconducting transition temperature on doping and structural distortion of the CuO2planes in La2−x MxCuO4 (M = Nd,Cr,Sr). Phys. Rev. Lett. 76, 1348–1351 ( 1996).

    Article  ADS  CAS  Google Scholar 

  7. Braden, M. et al. Coupling between superconductivity and structural deformation in La2−xSrxCuO4 (x 0.13). Phys. Rev. B 47, 12288–12291 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Kaldis, E. et al. Adisplacive structural transformation in the CuO2 planes of Yba 2Cu3Oxat the underdoped-overdoped phase separation line. Phys. Rev. Lett. 79, 4894– 4897 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Krüger, Ch., Conder, K., Schwer, H. & Kaldis, E. The dependence of the lattice parameters on oxygen content in orthorhombic YBa2Cu 3O6+x: A high precision reinvestigation of near equilibrium samples. J. Solid State Chem. 134, 356– 361 (1997).

    Article  ADS  Google Scholar 

  10. Radaelli, P. G. et al. Structure, doping and superconductivity in HgBa2CaCu 2O6+δ (Tc≤ 128K). Physica C 216, 29–35 ( 1993).

    Article  ADS  CAS  Google Scholar 

  11. Jorgensen, J. D. et al. in Recent Developments in High Temperature Superconductivity (eds Klamut, J., Veal, B. W., Dabrowski, B. M. & Klamut, P. W.) 1–16 (Lecture Notes in Physics, Springer, Berlin, (1996).

    Book  Google Scholar 

  12. Goldschmidt, D., Knizhnik, A., Direktovitch, Y., Reisner, G. M. & Eckstein, Y. Variation of Tcand resistivity in charge-compensated (CaxLa1−x) (Ba1.75−x La0.25+x)Cu3Oy. Phys. Rev. B 49, 15928–15935 ( 1994).

    Article  ADS  CAS  Google Scholar 

  13. Dabrowski, B. et al. New 1212 structural analog of YBa2Cu3O 7. The Sr-based superconducting copper oxide CuSr2−xLa xYCu2O7+δwith Tc 60K. Physica C 208, 183– 188 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Kramer, M. J. et al. Hole filling charge transfer and superconductivity in Nd 1+xBa2−xCu3O7+δ. Physica C 219, 145–155 ( 1994).

    Article  ADS  CAS  Google Scholar 

  15. Jorgensen, J. D. et al. Structural properties of oxygen-deficient YBa2Cu 3O7−δ. Phys. Rev. B 41 , 1863–1877 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Tallon, J. L. The relationship between bond-valence sums and Tcin cuprate superconductors. Physica C 168, 85–90 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Baillif, R., Dunand, A., Müller, J. & Yvon, K. Structural phase transformation in the cluster chalcogenides EuMo6S8and BaMo6S8. Phys. Rev. Lett. 47, 672–675 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Lachal, B., Baillif, R., Junod, A. & Müller, J. Structural instabilities of chevrel phases: The alkaline earth molybdenum sulphide series. J. Solid State Commun. 45, 849–851 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Jorgensen, J. D., Hinks, D. G. & Felcher, G. P. Lattice instability and superconductivity in the Pb, Sn, and Ba Chevrel phases. Phys. Rev. B 35, 5365–5368 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Pei, S. et al. Structural phase diagram of the Ba1−xKxBiO 3system. Phys. Rev. B 41, 4126– 4141 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Hirsh, J. & Scalapino, D. J. Enhanced superconductivity in quasi two-dimensional systems. Phys. Rev. Lett. 56, 2732–2735 (1986).

    Article  ADS  Google Scholar 

  22. Labbé, J. & Bok, J. Superconductivity in alkaline-earth-substituted La2CuO4: A theoretical model. Europhys. Lett. 3, 1225–1230 (1987).

    Article  ADS  Google Scholar 

  23. Xu, J.-H., Watson-Yang, T. J., Yu, J. & Freeman, A. J. Dominant role of the 2D Van Hove singularity on the Fermi surface and generalized susceptibility of the quasi-2D superconductor La2−xM xCuO4 (M = Sr,Ba, ⃛). Phys. Lett. A 120, 489–493 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Friedel, J. On the broadening of low dimension Van Hove singularities in oxide superconductors. J. Phys. (Paris) 49, 1435– 1441 (1988).

    Article  CAS  Google Scholar 

  25. Pickett, W. E. Electronic structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 61, 433–512 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Liu, R. et al. Electronic structure near EFin YBa2Cu 3Oxfor 6.35 ≤ x ≤ 6.9: A photoemission study. Phys. Rev. B 45, 5614–5621 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Liu, R. et al. Fermi-surface topology of YBa2Cu3Oxwith varied oxygen stoichiometry: A photoemission study. Phys. Rev. B 46, 11056–11068 ( 1992).

    Article  ADS  CAS  Google Scholar 

  28. Zaanen, J., Paxton, A. T., Jepsen, O. & Andersen, O. K. Chain-fragment doping and the phase-diagram of YBa2Cu3O 7−x. Phys. Rev. Lett. 60, 2785 –2688 (1988).

    Article  ADS  Google Scholar 

  29. Szotek, Z., Gyorffy, B. L., Temmerman, W. M. & Andersen, O. K. Van Hove scenario and the eight-band model for high-Tcsuperconductors. Phys. Rev. B. 58, 522– 526 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Norman, M. R., McMullan, G. J., Novikov, D. L. & Freeman, A. J. Effect of structure on the electronic density of states of doped lanthanum cuprate. Phys. Rev. B 48, 9935– 9937 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, Office of Science and Technology Centers; the US Department of Energy, Division of Basic Energy Sciences-Materials Sciences; by the Israel Science Foundation administered by Israel Academy of Sciences and Humanities and by the Center of Absorption in Science, Ministry of Immigrant Absorption, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmaissem, O., Jorgensen, J., Short, S. et al. Scaling of transition temperature and CuO2 plane buckling in a high-temperature superconductor. Nature 397, 45–48 (1999). https://doi.org/10.1038/16209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16209

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing