Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses

Abstract

Mutations in the dystrophin gene1 (DMD) and in genes encoding several dystrophin-associated proteins result in Duchenne and other forms of muscular dystrophy2. α-Dystroglycan (Dg) binds to laminins in the basement membrane surrounding each myofibre and docks with β-Dg, a transmembrane protein, which in turn interacts with dystrophin or utrophin in the subplasmalemmal cytoskeleton. α- and β-Dgs are thought to form the functional core of a larger complex of proteins extending from the basement membrane to the intracellular cytoskeleton, which serves as a superstructure necessary for sarcolemmal integrity2. Dgs have also been implicated in the formation of synaptic densities of acetylcholine receptors (AChRs) on skeletal muscle3,4. Here we report that chimaeric mice generated with ES cells targeted for both Dg alleles have skeletal muscles essentially devoid of Dgs and develop a progressive muscle pathology with changes emblematic of muscular dystrophies in humans. In addition, many neuromuscular junctions are disrupted in these mice. The ultrastructure of basement membranes and the deposition of laminin within them, however, appears unaffected in Dg-deficient muscles. We conclude that Dgs are necessary for myofibre survival and synapse differentiation or stability, but not for the formation of the muscle basement membrane, and that Dgs may have more than a purely structural function in maintaining muscle integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of both copies of Dag1 in ES cells.
Figure 2: Characterization of chimaeric mice and assessment of ES cell contribution.
Figure 3: Histology and ultrastructure of Dg-deficient muscle.
Figure 4: Immunohistochemistry of normal and Dg-deficient muscle.
Figure 5: Aberrant synapses in Dg-deficient mice.

Similar content being viewed by others

References

  1. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD ) cDNA and preliminary genomic organization of the DMD gene in mouse and affected individuals. Cell 50, 509– 517 (1987).

    Article  CAS  Google Scholar 

  2. Lim, L.E. & Campbell, K.P. The sarcoglycan complex in limb-girdle muscular dystrophy. Curr. Opin. Neurol. 11, 443–452 (1998).

    Article  CAS  Google Scholar 

  3. Gee, S.H., Montanaro, F., Lindenbaum, M.H. & Carbonetto, S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675– 686 (1994).

    Article  CAS  Google Scholar 

  4. Campanelli, J.T., Roberds, S.L., Campbell, K.P. & Scheller, R.H. A role for dystrophin associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 663– 674 (1994).

    Article  CAS  Google Scholar 

  5. Williamson R.A. et al. Dystroglycan is essential for early embryonic development—disruption of Reichert's membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 ( 1997).

    Article  CAS  Google Scholar 

  6. Cohen, M.W., Jacobson, C., Yurchenco, P.D., Morris, G.E. & Carbonetto, S. Laminin-induced clustering of dystroglycan on embryonic muscle cells: comparison with agrin-induced clustering. J. Cell Biol. 136, 1047– 1058 (1997).

    Article  CAS  Google Scholar 

  7. Henry, M.D. & Campbell, K.P. A role for dystroglycan in basement membrane assembly. Cell 95, 859– 870 (1998).

    Article  CAS  Google Scholar 

  8. Colognato, H., Winkelmann, D.A. & Yurchenco, P.D. Laminin polymerization induces a receptor-cytoskeleton network. J. Cell Biol. 145, 619– 631 (1999).

    Article  CAS  Google Scholar 

  9. Deconinck, A.E. et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717– 727 (1997).

    Article  CAS  Google Scholar 

  10. Grady, R.M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997).

    Article  CAS  Google Scholar 

  11. Peterson, A.L., Frair, P.M. & Wong, G.G. A technique for detection and relative quantitative analysis of glucosephosphate isomerase isozymes from nanogram tissue samples. Biochem. Genet. 16, 681–689 (1978).

    Article  CAS  Google Scholar 

  12. Straub, V., Rafael, J.A., Chamberlain, J.S. & Campbell, K.P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375– 385 (1997).

    Article  CAS  Google Scholar 

  13. Yoshida, M. et al. Dissociation of the complex of dystrophin and its associated proteins into several unique groups by n-octyl-D-glucoside. Eur. J. Biochem. 222, 1055–1061 (1994).

    Article  CAS  Google Scholar 

  14. Smalheiser, N.R. & Schwartz, N.B. Cranin, a laminin-binding protein of cell membranes. Proc. Natl Acad. Sci. USA 84, 6457–6461 (1987).

    Article  CAS  Google Scholar 

  15. Douville, P.J., Harvey, W.J. & Carbonetto, S. Isolation & partial characterization of high affinity laminin receptors in neural cells. J. Biol. Chem. 263 , 14964–14969 (1988).

    CAS  Google Scholar 

  16. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  Google Scholar 

  17. Bowe, M.A., Deyst, K.A., Leszyk, J.D. & Fallon, J.R. Identification and purification of an agrin receptor from Torpedo post-synaptic membranes: a heterodimeric complex related to the dystroglycans. Neuron 12, 1173–1180 ( 1994).

    Article  CAS  Google Scholar 

  18. Sugiyama, J., Bowen, D.C. & Hall, Z.W. Dystroglycan binds nerve and muscle agrin. Neuron 13, 103–115 ( 1994).

    Article  CAS  Google Scholar 

  19. Peng, H.B., Xie, H., Rossi, S.G. & Rotundo, R.L. Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan. J. Cell Biol. 145, 911– 921 (1999).

    Article  CAS  Google Scholar 

  20. Jung, D., Yang, B., Meyer, J., Chamberlain, J.S. & Campbell, K.P. Identification and characterization of the dystrophin anchoring site on β-dystroglycan. J. Biol. Chem. 270, 27305–27310 (1995).

    Article  CAS  Google Scholar 

  21. Fritz, J.D. et al. Expression of deletion-containing dystrophins in mdx muscle: implications for gene therapy and dystrophin function. Pediatr. Res. 37, 693–700 ( 1995).

    Article  CAS  Google Scholar 

  22. Rafael, J. et al. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J. Cell Biol. 134, 93–102 (1996).

    Article  CAS  Google Scholar 

  23. Xu, H., Christmas, P., Wu, X.-R., Wewer, U.M. & Engvall, E. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc. Natl Acad. Sci. USA 91, 5572–5576 (1994).

    Article  CAS  Google Scholar 

  24. Dickson, G. et al. Colocalization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes . J. Cell Sci. 103, 1223–1233 ( 1992).

    CAS  Google Scholar 

  25. Montanaro, F., Lindenbaum, M. & Carbonetto, S. α-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J. Cell Biol. 145, 1325–1340 (1999).

    Article  CAS  Google Scholar 

  26. Montanaro F., Gee, S.H., Jacobson, C., Lindenbaum, M.H. & Carbonetto, S. Laminin and α-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway. J. Neurosci. 18, 1250–1260 ( 1998).

    Article  CAS  Google Scholar 

  27. Cartaud, A., Coutant, S., Petrucci, T.C. & Cartaud, J. Evidence for in situ and in vitro association between β-dystroglycan and the subsynaptic 43K rapsyn protein. J. Biol. Chem. 273, 11321–11326 (1998).

    Article  CAS  Google Scholar 

  28. Ramarao, M.K. & Cohen, J.B. Mechanisms of nicotinic acetylcholine receptor cluster formation by rapsyn. Proc. Natl Acad. Sci. USA 95, 4007–4012 ( 1998).

    Article  CAS  Google Scholar 

  29. Peters, M.F., Kramarcy, N.R., Sealock, R. & Froehner, S.C. β2-Syntrophin: localization at the neuromuscular junction in skeletal muscle. Neuroreport 5, 1577– 1580 (1994).

    Article  CAS  Google Scholar 

  30. Burden, S.J. The formation of neuromuscular synapses. Genes Dev. 12, 133–148 (1998).

    Article  CAS  Google Scholar 

  31. Karnovsky, M.J. & Roots, L. A "direct-coloring" thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 ( 1964).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Peterson, J.-P. Julien and F. Montanaro for advice and suggestions; B. Mankoo and P.P. Pandolfi for reagents; and C. Jacobson, J. Altares, Q. Zhu and D. Houle for technical assistance. This work was supported by grants to S.C. from the Muscular Dystrophy Association (USA) and the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Carbonetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, P., Moukhles, H., Lindenbaum, M. et al. Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat Genet 23, 338–342 (1999). https://doi.org/10.1038/15519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing