Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E

Abstract

The sequential timing of cell-cycle transitions is primarily governed by the availability and activity of key cell-cycle proteins1. Recent studies in yeast have identified a class of ubiquitin ligases (E3 enzymes) called SCF complexes, which regulate the abundance of proteins that promote2,3,4 and inhibit4,5,6 cell-cycle progression at the G1-S phase transition. SCF complexes consist of three invariable components, Skp1, Cul-1 (Cdc53 in yeast) and Rbx1, and a variable F-box protein that recruits a specific cellular protein to the ubquitin pathway for degradation2,3,5,7,8,9,10,11,12,13. To study the role of Cul-1 in mammalian development and cell-cycle regulation, we generated mice deficient for Cul1 and analysed null embryos and heterozygous cell lines. We show that Cul1 is required for early mouse development and that Cul1 mutants fail to regulate the abundance of the G1 cyclin, cyclin E (encoded by Ccne), during embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the Cul1 genomic locus.
Figure 2: Early embryonic lethality of Cul1 mutant embryos.
Figure 3: Continued proliferation and increased cell death/p53 protein in Cul1 mutant embryos.
Figure 4: Cul-1 limits cyclin E levels in mouse embryos.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Slingerland, J. & Pagano, M. Regulation of the cell cycle by the ubiquitin pathway. Results Probl. Cell Differ. 22, 133–147 (1998).

    Article  CAS  Google Scholar 

  2. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284, 662–665 (1999).

    Article  CAS  Google Scholar 

  3. Willems, A.R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453–463 (1996).

    Article  CAS  Google Scholar 

  4. Patton, E.E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692–705 (1998).

    Article  CAS  Google Scholar 

  5. Feldman, R.M., Correll, C.C., Kaplan, K.B. & Deshaies, R.J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  6. Verma, R., Feldman, R.M. & Deshaies, R.J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8, 1427–1437 (1997).

    Article  CAS  Google Scholar 

  7. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  Google Scholar 

  8. Krek, W. Proteolysis and the G1-S transition: the SCF connection. Curr. Opin. Genet. Dev. 8, 36–42 (1998).

    Article  CAS  Google Scholar 

  9. Lisztwan, J. et al. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17, 368–383 (1998).

    Article  CAS  Google Scholar 

  10. Lyapina, S.A., Correll, C.C., Kipreos, E.T. & Deshaies, R.J. Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein. Proc. Natl Acad. Sci. USA 95, 7451–7456 (1998).

    Article  CAS  Google Scholar 

  11. Mathias, N. et al. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S- phase transition and identifies a conserved family of proteins. Mol. Cell. Biol. 16, 6634–6643 (1996).

    Article  CAS  Google Scholar 

  12. Michel, J.J. & Xiong, Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 9, 435–449 (1998).

    CAS  Google Scholar 

  13. Yu, Z.K., Gervais, J.L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).

    Article  CAS  Google Scholar 

  14. Papaioannou, V. & Johnson, R.S. Production of chimeras and genetically defined offspring from targeted ES cells. in Gene Targeting-A Practical Approach (ed. Joyner, A.L.) 107–146 (IRL Press, New York, 1993).

    Google Scholar 

  15. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embyro 61–63 (Cold Spring Harbor Laboratory Press, Plainview, New York, 1994).

    Google Scholar 

  16. Kipreos, E.T., Lander, L.E., Wing, J.P., He, W.W. & Hedgecock, E.M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85, 829–839 (1996).

    Article  CAS  Google Scholar 

  17. Fuchs, S.Y., Adler, V., Buschmann, T., Wu, X. & Ronai, Z. Mdm2 association with p53 targets its ubiquitination. Oncogene 17, 2543–2547 (1998).

    Article  CAS  Google Scholar 

  18. Grossman, S.R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998).

    Article  CAS  Google Scholar 

  19. Patton, E.E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev.12, 692–705 (1998); erratum: 12, 3144 (1998).

    Article  CAS  Google Scholar 

  20. Won, K.A. & Reed, S.I. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J. 15, 4182–4193 (1996).

    Article  CAS  Google Scholar 

  21. Resnitzky, D., Gossen, M., Bujard, H. & Reed, S.I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell. Biol. 14, 1669–1679 (1994).

    Article  CAS  Google Scholar 

  22. Quelle, D.E. et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559–1571 (1993).

    Article  CAS  Google Scholar 

  23. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between SCFSkp2 ubiquitin protein ligase and E2F-1 underlies regulation of E2F-1 degradation. Nature Cell Biol. 1, 14–19 (1999).

    Article  CAS  Google Scholar 

  24. Winston, J.T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999); erratum: 13, 1050 (1999).

    Article  CAS  Google Scholar 

  25. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  Google Scholar 

  26. Suzuki, H. et al. IκBα ubiquitination is catalyzed by an SCF-like complex containing Skp1, cullin-1, and two F-box/WD40-repeat proteins, βTrCP1 and βTrCP2. Biochem. Biophys. Res. Commun. 256, 127–132 (1999).

    Article  CAS  Google Scholar 

  27. Latres, E., Chiaur, D.S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  Google Scholar 

  28. Arbeit, J.M., Howley, P.M. & Hanahan, D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl Acad. Sci. USA 93, 2930–2935 (1996).

    Article  CAS  Google Scholar 

  29. Suzuki, A. et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242–1252 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the UCSD Cancer Center Histology Core (N. Varki and M. Lawrence) for paraffin embedding and sectioning; A. Lewak, M. Poloni and W. McNulty for technical assistance; J.Y.J. Wang, J. Roberts, R. Hampton, N. Bays, R. Gardner, S. Cronin, A. McElroy, L. Fortunato, C. Johns, G. Bain, P. O'Farrell, J.-K. Heriche, E. Bier, D. Ang, J., N. and A. Dealy, and M. Moreno for advice and assistance; and M. Tyers, J. Cross and Y. Wang for exemplary collegiality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dealy, M., Nguyen, K., Lo, J. et al. Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 23, 245–248 (1999). https://doi.org/10.1038/13886

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing