Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons

Abstract

Transmembrane and secreted glycoproteins of the semaphorin family are typically classified as inhibitory neuronal guidance molecules. However, although chemorepulsive activity has been demonstrated for several semaphorin family members, little is known about the function of the numerous transmembrane semaphorins identified to date. Here we demonstrated that the extracellular semaphorin domain of a transmembrane semaphorin, semaphorin-1a, could actively perturb axon pathfinding in vivo when presented homogenously as a recombinant freely soluble factor. When ectopic overexpression was limited to defined epithelial regions, semaphorin-1a could directly steer axons by acting as an attractive guidance molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant Sema-1a construct.
Figure 2: Ectopic rSema-1a induces defects in Ti1-axon guidance.
Figure 3: Schematic summary of rSema-1a induced Ti1 axon pathfinding defects.
Figure 4: Dose–response curve comparing the activity of soluble, dimerized or clustered rSema-1a.
Figure 5: Full-length Sema-1a formed microscopically visible aggregates on the cell surface.
Figure 6: Ti1 growth cones turned toward ectopic S2 and COS cells expressing Sema-1a.

Similar content being viewed by others

References

  1. Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993).

    Article  CAS  Google Scholar 

  2. Luo, Y. et al. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14, 1131– 1140 (1995).

    Article  CAS  Google Scholar 

  3. Kolodkin, A. L. Semaphorins: Mediators of repulsive growth cone guidance. Trends Cell Biol. 6, 15–22 (1996).

    Article  CAS  Google Scholar 

  4. Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    Article  CAS  Google Scholar 

  5. Fan, J. & Raper, J. A. Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14, 263–274 (1995).

    Article  CAS  Google Scholar 

  6. Puschel, A. W., Adams, R. H. & Betz, H. Murine Semaphorin D/Collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14, 941–948 (1995).

    Article  CAS  Google Scholar 

  7. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 74, 217–227 (1993).

    Article  Google Scholar 

  8. Wong, J. T., Yu, W. T. & O'Connor, T. P. Transmembrane grasshopper Semaphorin I promotes axon outgrowth in vivo. Development 124, 3597–3607 (1997).

    CAS  PubMed  Google Scholar 

  9. Bagnard, D., Lohrum, M., Uziel, D., Puschel, A. W. & Bolz, J. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 125, 5043–5053 (1998).

    CAS  PubMed  Google Scholar 

  10. Adams, R. H., Betz, H. & Puschel, A. W. A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mech. Dev. 57, 33–45 (1996).

    Article  CAS  Google Scholar 

  11. Hall, K. T. et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc. Natl. Acad. Sci. USA 93, 11780–11785 (1996).

    Article  CAS  Google Scholar 

  12. Kolodkin, A. L. et al. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9, 831–845 (1992).

    Article  CAS  Google Scholar 

  13. Yu, H., Araj, H. H., Ralls, S. A. & Kolodkin, A. L. The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20, 207–220 (1998).

    Article  CAS  Google Scholar 

  14. Keshishian, H. & Bentley, D. Embryogenesis of peripheral nerve pathways in grasshopper legs. II. The major nerve routes. Dev. Biol. 96, 103–115 (1983).

    Article  CAS  Google Scholar 

  15. Chang, W. S. Serikawa, K., Allen, K. & Bentley, D. Disruption of pioneer growth cone guidance in vivo by removal of glycosyl-phosphatidylinositol-anchored cell surface proteins. Development 114, 507–519 (1992).

    CAS  PubMed  Google Scholar 

  16. Isbister, C. M., Tsai, A., Wong, S. T., Kolodkin, A. L. & O'Connor, T. P. Discrete roles for secreted and transmembrane semaphorins in neuronal growth cone guidance in vivo. Development 126, 2007–2019 (1999).

    CAS  PubMed  Google Scholar 

  17. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  Google Scholar 

  18. Cohen, N. A., Brenman, J. E., Snyder, S. H. & Bredt, D. S. Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17, 759–767 (1996).

    Article  CAS  Google Scholar 

  19. Ponting, C. P., Phillips, C., Davies, K. E. & Blake, D. J. PDZ domains: targeting signaling molecules to submembranous sites. Bioessays 6, 469–479 (1997).

    Article  Google Scholar 

  20. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85– 88 (1995).

    Article  CAS  Google Scholar 

  21. Bentley, D. & Keshishian, H. Pathfinding by peripheral pioneer neurons in grasshoppers. Science 218, 1082–1088 (1982).

    Article  CAS  Google Scholar 

  22. Keshishian, H. & Bentley, D. Embryogenesis of peripheral nerve pathways in grasshopper legs. Dev. Biol. 96, 89–102 (1983).

    Article  CAS  Google Scholar 

  23. O'Connor, T. P., Duerr, J. S. & Bentley, D. J. Pioneer growth cone steering decisions mediated by single filopodial contact in situ. J. Neurosci. 10, 3935–3949 (1990).

    Article  CAS  Google Scholar 

  24. Takahashi, T., Nakamura, F., Jun, Z., Kalb, R. G. & Strittmatter, S. M. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat. Neurosci. 61, 487–493 (1998).

    Article  Google Scholar 

  25. Klose, M. & Bentley, D. Transient pioneer neurons are essential for formation of an embryonic peripheral nerve. Science 245, 982–984 (1989).

    Article  CAS  Google Scholar 

  26. Bentley, D. & Caudy, M. Pioneer axons lose directed growth after selective killing of guidepost cells. Nature 304, 62–65 (1983).

    Article  CAS  Google Scholar 

  27. Mark, M. D., Lohrum, M. & Puschel, A. W. Patterning neuronal connections by chemorepulsion: the semaphorins. Cell Tissue Res. 290, 299–306 (1997).

    Article  CAS  Google Scholar 

  28. Sekido, Y. et al. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc. Natl. Acad. Sci. USA 93, 4120– 4125 (1996).

    Article  CAS  Google Scholar 

  29. Yamada, T., Endo, R., Gotoh, M. & Hirohashi, S. Identification of semaphorin E as a non-MDR drug resistance gene of human cancers. Proc. Natl. Acad. Sci. USA 94, 14713– 14718 (1997).

    Article  CAS  Google Scholar 

  30. Winberg, M. L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903– 916 (1998).

    Article  CAS  Google Scholar 

  31. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  Google Scholar 

  32. Hart, A. C., Kramer, H. & Zipursky, S. L. Extracellular domain of the boss transmembrane ligand acts as an antagonist of the sev receptor. Nature 361, 732–736 (1993).

    Article  CAS  Google Scholar 

  33. Klostermann, A., Lohrum, M., Adams, R. H. & Puschel, A. W. The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J. Biol. Chem. 273, 7326– 7331 (1998).

    Article  CAS  Google Scholar 

  34. Koppel, A. M. & Raper, J. A. Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J. Biol. Chem. 273, 15708–15713 (1998).

    Article  CAS  Google Scholar 

  35. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  Google Scholar 

  36. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    Article  CAS  Google Scholar 

  37. Caudy, M. & Bentley, D. Pioneer growth cone morphologies reveal proximal increases in substrate affinity within leg segments of grasshopper embryos. J. Neurosci. 6, 364– 379 (1986).

    Article  CAS  Google Scholar 

  38. Caudy, M. & Bentley, D. Pioneer growth cone steering along a series of neuronal and non-neuronal cues of different affinities. J. Neurosci. 6, 1781–1795 (1986).

    Article  CAS  Google Scholar 

  39. Condic, M. L. & Bentley, D. Pioneer growth cone adhesion in vivo to boundary cells and neurons after enzymatic removal of basal lamina in grasshopper embryos. J. Neurosci. 10, 3935–3946 (1989).

    Google Scholar 

  40. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucl. Acids Res. 16, 1043–1061 (1988).

    Article  CAS  Google Scholar 

  41. Schneider, I. Cell lines derived from late embryonic stages of Drosophila melano gaster. Embryol. Exp. Morphol. 27, 353– 365 (1972).

    CAS  Google Scholar 

  42. Jokerst, R. S., Weeks, J. R., Zehring, W. A. & Greenleaf, A. L. Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila. Mol. Gen. Genet. 215, 266– 275 (1989).

    Article  CAS  Google Scholar 

  43. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425– 435 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Edmond T. Wong for discussions and suggestions, David Bentley for reviewing the manuscript and Alex L. Kolodkin for supplying the full-length clone AK74. J.T.W. was supported by a Doctoral Studentship from the Rick Hansen Institute. The work was supported in part by grants from the Medical Research Council of Canada (MT-13246) and Natural Science and Engineering Research Council of Canada (OGP0171387; T.P.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. O'Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, J., Wong, S. & O'Connor, T. Ectopic semaphorin-1a functions as an attractive guidance cue for developing peripheral neurons. Nat Neurosci 2, 798–803 (1999). https://doi.org/10.1038/12168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing