Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fate maps old and new

Abstract

Fate mapping was once the province of classical experimental embryologists. Now a battery of new and sophisticated methods can be used to trace where cells go and what they do in embryos. Here we use examples from gastrulating fish and amphibian embryos and from the chick limb bud and central nervous system to show how this information has contributed to our understanding of developmental processes. This knowledge will become increasingly important in interpreting the complex patterns of gene expression that are being discovered during development, as well as in understanding the effects of genetic manipulations and in directing experimental interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fate maps of early Xenopus embryos.
Figure 2: Fate in the chick wing bud, mapped using lipophilic membrane dyes.
Figure 3: Clonal analysis reveals lineage-restricted compartments in flies and chicks.

Similar content being viewed by others

References

  1. Vogt, W. Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. Vortwort über Wege and Ziele. I. Teil: Methodik undWirkungsweise der örtlichen Vitalfärbung mit Agar als Farbträger. Wilhelm Roux Arch. Entwicklungsmech. Org. 106, 542–610 (1925).

    Article  Google Scholar 

  2. Vogt, W. Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. II. Teil: Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux Arch. Entwicklungsmech. Org. 120, 384–706 (1929)

    Article  Google Scholar 

  3. Keller, R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42, 222–241 (1975).

    Article  CAS  Google Scholar 

  4. Keller, R. E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and movements of the deep layer. Dev. Biol. 51, 118–137 (1976).

    Article  CAS  Google Scholar 

  5. Smith, J. C. & Malacinski, G. M. The origin of the mesoderm in an anuran Xenopus laevis and a urodele Ambystoma mexicanum. Dev. Biol. 98, 250–254 (1983).

    Article  CAS  Google Scholar 

  6. Saxen, L. & Toivonen, S. Primary Embryonic Induction (Logos, London, 1962).

    Google Scholar 

  7. Spemann, H. & Mangold, H. Uber Induktion von Embryonalanlagen durch implantation artfremder organisatoren. Wilhelm Roux Arch. Entwicklungsmech. Org. 100, 599–638 (1924).

    Google Scholar 

  8. Sasai, Y., Lu, B., Steinbeisser, H., De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    Article  CAS  Google Scholar 

  9. Wilson, P. A. & Hemmati-Brivaniou, A. Induction of epidermis and inhibition of neural cell fate. Nature 376, 331–333 (1995).

    Article  CAS  Google Scholar 

  10. Saunders, J. W. Jr The proximo-distal sequence of the origin of the parts of the chick wing and the role of ectoderm. J. Exp. Zool. 108, 363–403 (1948).

    Article  Google Scholar 

  11. Hampé, P. A. Contribution a l’étude du dévelopment et de la régulation des deficiences at des excédents dans la patte de l’embryon de poulet. Arch. D’anat. Microscop. Morphol. Exp. Suppl. 48, 347–479 (1959).

    Google Scholar 

  12. Stark, R. J. & Searls, R. L. A description of the chick wing bud development and a model of limb morphogenesis. Dev. Biol. 33, 138–153 (1973).

    Article  CAS  Google Scholar 

  13. Bowen, J., Hinchliffe, J. R., Horder, T. J. & Reeve, A. M. F. The fate map of the chick forelimb-bud and its bearing on hypothesized developmental control mechanisms. Anat. Embryol. 179, 269–283 (1989).

    Article  CAS  Google Scholar 

  14. Le Douarin, N. M. The Neural Crest (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  15. Le Douarin, N. M. Cell recognition based on natural morphological nuclear markers. Med. Biol. 52, 281–319 (1974).

    CAS  PubMed  Google Scholar 

  16. Selleck, M. A. J. & Bronner-Fraser, M. Origins of the avian neural crest: the role of the neural plate-epidermal interactions. Development 121, 525–538 (1995).

    CAS  PubMed  Google Scholar 

  17. Vargesson, N. et al. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997).

    CAS  PubMed  Google Scholar 

  18. Honig, M. G. & Hume, R. I. DiI and DiO: versatile fluorescent dyes for neural labelling and pathway tracing. Trends Neurosci. 12, 333–341 (1989).

    Article  CAS  Google Scholar 

  19. Summerbell, D. A. Quantitative analysis of the effect of excision of the AER from the chick limb-bud. J. Embryol. Exp. Morphol. 32, 651–660 (1974).

    CAS  PubMed  Google Scholar 

  20. Schwabe, J. W. R., Rodriguez-Esteban, C. & Izpisúa Belmonte, J. C. Limbs are moving; where are they going? Trends Genet. 14, 229–235 (1998).

    Article  CAS  Google Scholar 

  21. Johnson, R. L. & Tabin, C.J. Molecular models for the vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  Google Scholar 

  22. Izpisúa-Belmonte, J. C. & Dubole, D. Homeobox genes and pattern formation in the vertebrate limb. Dev. Biol. 152, 26–36 (1992).

    Article  Google Scholar 

  23. Nelson, C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996).

    CAS  PubMed  Google Scholar 

  24. Fromental-Ramain, C. et al. Hoxa13 and Hoxd13 play a crucial role in the patterning of the limb autopod. Development 122, 2997–3011 (1996)

    CAS  PubMed  Google Scholar 

  25. Martin, G. R. The role of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  Google Scholar 

  26. Sauders, J. W. Jr & Gasseling, M. T. in Epithelial–Mesenchymal Interactions (eds Fleischmaier, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Baltimore, 1968).

    Google Scholar 

  27. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  28. Yang, Y. et al. Relationship between does, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997).

    CAS  PubMed  Google Scholar 

  29. Lewis, J. in Vertebrate Limb and Somite Morphogenesis (eds Ede, D. A., Hinchcliffe, J. R. & Balls, M.) 215–228 (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  30. Kimmel, C. B., Warga, R. & Kane, D. A. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265–276 (1994).

    CAS  PubMed  Google Scholar 

  31. Christ, B., Jacob, H. J. & Jacob, M. Experimental analysis of origin of the wing musculature in avian embryos. Anat. Embryol. 150, 171–186 (1977).

    Article  CAS  Google Scholar 

  32. Chevallie, A. & Kieny, M. On the role of the connective tissue in the patterning of the chick limb musculature. Wilhelm Roux Arch. Dev. Biol. 191, 277–280 (1982).

    Article  Google Scholar 

  33. Butler, J., Cosmos, E. & Cauwenberg, P. Positional signals: evidence for a possible role in muscle fibre-type patterning of the embryonic avian limb. Development 102, 763–772 (1988).

    Google Scholar 

  34. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New. Biol. 245, 251–253 (1973).

    Article  CAS  Google Scholar 

  35. Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restriction. Nature 344, 431–435 (1990).

    Article  CAS  Google Scholar 

  36. Wingate, R. J. T. & Lumsden, A. Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122, 2143–2152 (1996).

    CAS  PubMed  Google Scholar 

  37. Altabef, M., Clarke, J. D. W. & Tickle, C. Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 124, 4547–4556 (1997).

    CAS  PubMed  Google Scholar 

  38. Loomis, C. A. et al. The mouse Engrailed-1 gene and ventral limb patterning. Nature 382, 360–363 (1996).

    Article  CAS  Google Scholar 

  39. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  40. Dale, L. & Slack, J. M. W. Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551 (1987).

    CAS  PubMed  Google Scholar 

  41. Moody, S. A. Fates of the blastomeres of the 16-cell stage Xenopus embryos. Dev. Biol. 122, 300–319 (1987).

    Article  CAS  Google Scholar 

  42. Moody, S. A. Fates of the blastomeres of the 32-cell stage Xenopus embryos. Dev. Biol. 122, 300–319 (1987).

    Article  CAS  Google Scholar 

  43. Sanes, J. R., Rubenstein, J. L. R. & Nicolas, J.-F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142 (1986).

    Article  CAS  Google Scholar 

  44. Price, J., Turner, D. & Cepko, C. L. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl Acad. Sci. USA 84, 156–160 (1987).

    Article  CAS  Google Scholar 

  45. Fields-Berry, S. C., Halliday, A. L. & Cepko, C. L. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl Acad. Sci. USA 89, 693–697 (1992).

    Article  CAS  Google Scholar 

  46. Luskin, M. B., Parnavelas, J. G. & Barfield, J. A. Neurons, astrocytes and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J. Neurosci. 13, 1730–1750 (1993).

    Article  CAS  Google Scholar 

  47. Grove, E. A. et al. Multiple restricted lineages in the embryonic rat cerebral cortex. Development 117, 553–561 (1993).

    CAS  PubMed  Google Scholar 

  48. Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999).

    Article  CAS  Google Scholar 

  49. Lavdas, A. A., Mione, M. C. & Parnavelas, J. G. Neuronal clones in the ceebral cortex show morphological and neurotransmitter heterogeneity during development. Cereb. Cortex 6, 490–497 (1996).

    Article  CAS  Google Scholar 

  50. Walsh, C. & Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).

    Article  CAS  Google Scholar 

  51. Golden, J. A., Fields-Berry, S. C. & Cepko, C. L. Construction and characterisation of a highly complex retroviral library for lineage analysis. Proc. Natl Acad. Sci. USA 92, 5704–5708 (1995).

    Article  CAS  Google Scholar 

  52. Mione, M. C., Cavanagh, J. F. R., Harris, B. & Parnavelas, J. G. Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J. Neurosci. 17, 2018–2029 (1997).

    Article  CAS  Google Scholar 

  53. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  Google Scholar 

  54. Miller, R. H. Oligodendrocyte origins. Trends Neurosci. 19, 92–96 (1996).

    Article  CAS  Google Scholar 

  55. Leber, S. M., Breedlove, S. M. & Sanes, J. R. Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci. 10, 2451–2462 (1990).

    Article  CAS  Google Scholar 

  56. Erskine, L., Patel, K. & Clarke, J. D. W. Progenitor dispersal and the origin of early neuronal phenotypes in the chick embryo spinal cord. Dev. Biol. 199, 26–41 (1998).

    Article  CAS  Google Scholar 

  57. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  CAS  Google Scholar 

  58. Lumsden, A., Clarke, J. D. W., Keynes, R. & Fraser, S. E. Early phenotypic choices by neuronal precursors, revealed by clonal analysis of the chick embryo hindbrain. Development 120, 1581–1589 (1994).

    CAS  PubMed  Google Scholar 

  59. Clarke, J. D. W., Erskine, L. & Lumsden, A. Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain. Dev. Dyn. 212, 14–26 (1998).

    Article  CAS  Google Scholar 

  60. Sauer, B. Inducible gene targetting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  Google Scholar 

  61. Nicolas, J. F., Mathis, L., Bonnerot, C. & Saurin, W. Evidence in the mouse for self-renewing stem cells in the formation of a segmented longitudinal structure, the myotome. Development 122, 2933–2946 (1996).

    CAS  PubMed  Google Scholar 

  62. Mathis, L., Bonnerot, C. Puelles, L. & Nicolas, J. F. Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development 124, 4089–4104 (1997).

    CAS  PubMed  Google Scholar 

  63. Fishell, G. Striatal precursors adopt cortical identities in response to local cues. Development 121, 803–812 (1995).

    CAS  PubMed  Google Scholar 

  64. Goldstein, A. M. & Fishman, M. C. Notochord regulates cardiac lineage in zebrafish embryos. Dev. Biol. 201, 247–252 (1998).

    Article  CAS  Google Scholar 

  65. Cambridge, S. B., Davis, R. L. & Minden, J. S. Drosophila mitotic domain boundaries as cell fate boundaries. Science 277, 825–828 (1997).

    Article  CAS  Google Scholar 

  66. Zernicka-Goetz, M. et al. An indelible lineage marker for Xenopus using a mutated fluorescent protein. Development 122, 3719–3724 (1996).

    CAS  PubMed  Google Scholar 

  67. Jacobs, R. E. & Fraser, S. E. Magnetic resonance microscopy of embryonic cell lineages and movements. Science 263, 681–684 (1994).

    Article  CAS  Google Scholar 

  68. Huber, M. M. et al. Fluorescently detectable magnetic resonance agents. Bioconjug. Chem. 9, 242–249 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryll Tickle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J., Tickle, C. Fate maps old and new. Nat Cell Biol 1, E103–E109 (1999). https://doi.org/10.1038/12105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/12105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing