Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Response of Ewing tumor cells to forced and activated p53 expression

Abstract

The EWS-FLI1 transcription factor is consistently expressed in 85% of Ewing tumors (EFT). In heterologous cells, EWS-FLI1 induces p53-dependent cell cycle arrest or apoptosis. It has been speculated that the p53 tumor suppressor pathway may be generally compromised in EFT despite only rare p53 mutations. In order to test for functional integrity of this pathway, we have investigated a series of EFT cell lines that differ from each other with respect to their endogenous p53 and INK4A gene status for their response to ectopic p53 expression and to stimulation of endogenous p53 activity by X-ray treatment. Significant interindividual and intratumoral variations in the apoptotic propensity of EFT cell lines to transient expression of ectopic p53 were observed, which was independent of the level of p53 expression. In cell lines with a low apoptotic incidence, apoptosis was delayed and the surviving fraction showed a prolonged growth arrest. Complete resistance to p53-induced apoptosis in two cell lines established from the same patient was associated with a high BCL2/BAX ratio and low levels of APAF1. Sensitivity to X-rays showed a trend towards a higher apoptotic rate in wild-type (wt) p53 expressing than in p53 mutant cells. However, one wt p53-expressing EFT cell line was completely refractory to irradiation-stimulated cell death despite high apoptotic responsiveness to ectopic p53. No difference in Ser15 phosphorylation and the transcriptional activation of p53 targets was observed in wt p53 EFT cell lines irrespective of the induction of cell death or growth arrest. All together, our results demonstrate that despite significant variability in the outcome, cell death or cell cycle arrest, the p53 downstream pathway and the DNA damage signaling pathway are functionally intact in EFT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Beltinger CP, White PS, Maris JM, Sulman EP, Jensen SJ, LePaslier D, Stallard BJ, Goeddel DV, de Sauvage FJ and Brodeur GM . (1996). Genomics, 35, 94–100.

  • Chen X, Ko LJ, Jayaraman L and Prives C . (1996). Genes Dev., 10, 2438–2451.

  • de Alava E, Antonescu CR, Panizo A, Leung D, Meyers PA, Huvos AG, Pardo-Mindan FJ, Healey JH and Ladanyi M . (2000). Cancer, 89, 783–792.

  • Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, Ambros PF, Sheer D, Turc Carel C, Triche TJ, Anrias A and Thomas G . (1994). N. Engl. J. Med., 331, 294–299.

  • Deneen B and Denny CT . (2001). Oncogene, 20, 6731–6741.

  • Di Como CJ and Prives C . (1998). Oncogene, 16, 2527–2539.

  • Durocher D and Jackson SP . (2001). Curr. Opin. Cell Biol., 13, 225–231.

  • Friedlander P, Haupt Y, Prives C and Oren M . (1996). Mol. Cell. Biol., 16, 4961–4971.

  • Gorgoulis VG, Zacharatos PV, Manolis E, Ikonomopoulos JA, Damalas A, Lamprinopoulos C, Rassidakis GZ, Zoumpourlis V, Kotsinas A, Rassidakis AN, Halazonetis TD and Kittas C . (1998). Br. J. Cancer, 77, 374–384.

  • Gottlieb TM and Oren M . (1996). Biochim. Biophys. Acta, 1287, 77–102.

  • Grenet J, Valentine V, Kitson J, Li H, Farrow SN and Kidd VJ . (1998). Genomics, 49, 385–393.

  • Guimaraes DP and Hainaut P . (2002). Biochimie, 84, 83–93.

  • Hadano S, Nasir J, Nichol K, Rasper DM, Vaillancourt JP, Sherer SW, Beatty BG, Ikeda JE, Nicholson DW and Hayden MR . (1999). Mamm. Genome, 10, 757–760.

  • Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris CC and Montesano R . (1998). Nucleic Acids. Res., 26, 205–213.

  • Hamelin R, Zucman J, Melot T, Delattre O and Thomas G . (1994). Int. J. Cancer, 57, 336–340.

  • Hattinger CM, Rumpler S, Strehl S, Ambros IM, Zoubek A, Potschger U, Gadner H and Ambros PF . (1999). Genes Chromosomes Cancer, 24, 243–254.

  • Haupt Y, Maya R, Kazaz A and Oren M . (1997). Nature, 387, 296–299.

  • Haupt Y, Rowan S and Oren M . (1995). Oncogene, 10, 1563–1571.

  • Hermeking H, Funk JO, Reichert M, Ellwart JW and Eick D . (1995). Oncogene, 11, 1409–1415.

  • Ichimiya S, Nimura Y, Kageyama H, Takada N, Sunahara M, Shishikura T, Nakamura Y, Sakiyama S, Seki N, Ohira M, Kaneko Y, McKeon F, Caput D and Nakagawara A . (1999). Oncogene, 18, 1061–1066.

  • Kovar H . (1998). Curr. Opin. Oncol., 10, 334–342.

  • Kovar H, Aryee DN, Jug G, Henockl C, Schemper M, Delattre O, Thomas G and Gadner H . (1996). Cell Growth Differ., 7, 429–437.

  • Kovar H, Auinger A, Jug G, Aryee D, Zoubek A, Salzer-Kuntschik M and Gadner H . (1993a). Oncogene, 8, 2683–2690.

  • Kovar H, Auinger A, Jug G, Aryee D, Zoubek A, Salzer-Kuntschik M and Gadner H . (1993b). Oncogene, 8, 2683–2690.

  • Kovar H, Fallaux FJ, Pribill I, Jugovic D, Bartl S, Ambros PF, Aryee DN, Wiegant JC and Hoeben RC . (2000a). Cancer Res., 60, 1557–1560.

  • Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B, Windhager R and Gadner H . (1997). Oncogene, 15, 2225–2232.

  • Kovar H, Jug G, Printz D, Bartl S, Schmid G and Wesierska-Gadek J . (2000b). Oncogene, 19, 4096–4107.

  • Kubbutat MH, Jones SN and Vousden KH . (1997). Nature, 387, 299–303.

  • Ladanyi M, Lewis R, Jhanwar SC, Gerald W, Huvos AG and Healey JH . (1995). J. Pathol., 175, 211–217.

  • Lahti JM, Xiang J and Kidd VJ . (1995). Prog. Cell Cycle Res., 1, 329–338.

  • Lassus P, Ferlin M, Piette J and Hibner U . (1996). EMBO J., 15, 4566–4573.

  • Lessnick SL, Dacwag CS and Golub TR . (2002). Cancer Cell, 1, 393–401.

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC and Ito Y . (2002). Cell, 109, 113–124.

  • Lowe SW, Ruley HE, Jacks T and Housman DE . (1993). Cell, 74, 957–967.

  • McKeon C, Thiele CJ, Ross RA, Kwan M, Triche TJ, Miser JS and Israel MA . (1988). Cancer Res., 48, 4307–4311.

  • Midgley CA, Owens B, Briscoe CV, Thomas DB, Lane DP and Hall PA . (1995). J. Cell Sci., 108, 1843–1848.

  • Mukae N, Enari M, Sakahira H, Fukuda Y, Inazawa J, Toh H and Nagata S . (1998). Proc. Natl. Acad. Sci. USA, 95, 9123–9128.

  • O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace AJJ and Kohn KW . (1997). Cancer Res., 57, 4285–4300.

  • Ouchida M, Ohno T, Fujimura Y, Rao VN and Reddy ES . (1995). Oncogene, 11, 1049–1054.

  • Park DJ, Nakamura H, Chumakov AM, Said JW, Miller CW, Chen DL and Koeffler HP . (1994). Oncogene, 9, 1899–1906.

  • Pietenpol JA, Lengauer C, Jordan J, Kinzler KW and Vogelstein B . (1996). Proc. Natl. Acad. Sci. USA, 93, 8390–8394.

  • Qin XQ, Livingston DM, Kaelin WGJ and Adams PD . (1994). Proc. Natl. Acad. Sci. USA, 91, 10918–10922.

  • Renzing J and Lane DP . (1995). Oncogene, 10, 1865–1868.

  • Sanchez-Prieto R, de Alava E, Palomino T, Guinea J, Fernandez V, Cebrian S, LLeonart M, Cabello P, Martin P, San Roman C, Bornstein R, Pardo J, Martinez A, Diaz-Espada F, Barrios Y and Cajal S . (1999). Nat. Med., 5, 1076–1079.

  • Sollazzo MR, Benassi MS, Magagnoli G, Gamberi G, Molendini L, Ragazzini P, Merli M, Ferrari C, Balladelli A and Picci P . (1999). Tumorigenesis, 85, 167–173.

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH and Peters G . (1998). EMBO J., 17, 5001–5014.

  • Tanaka K, Iwakuma T, Harimaya K, Sato H and Iwamoto Y . (1997). J. Clin. Invest., 99, 239–247.

  • Thomas M, Pim D and Banks L . (1999). Oncogene, 18, 7690–7700.

  • Toretsky JA, Connell Y, Neckers L and Bhat NK . (1997). J. Neurooncol., 31, 9–16.

  • Vecchio G, Cavazzana AO, Triche TJ, Ron D, Reynolds CP and Eva A . (1989). Oncogene, 4, 897–900.

  • Wagner AJ, Kokontis JM and Hay N . (1994). Genes Dev., 8, 2817–2830.

  • Wei G, Antonescu CR, de Alava E, Leung D, Huvos AG, Meyers PA, Healey JH and Ladanyi M . (2000). Cancer, 89, 793–799.

  • Woo RA, Jack MT, Xu Y, Burma S, Chen DJ and Lee PW . (2002). EMBO J., 21, 3000–3008.

  • Wu X and Levine AJ . (1994). Proc. Natl. Acad. Sci. USA, 91, 3602–3606.

  • Yonish-Rouach E, Borde J, Gotteland M, Mishal Z, Viron A and May E . (1994). Cell Death Differ., 1, 39–47.

  • Zhang Y, Xiong Y and Yarbrough WG . (1998). Cell, 92, 725–734.

  • Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, Zucker JM, Triche TJ, Sheer D, Turc Carel C et al. (1993). EMBO J., 12, 4481–4487.

  • Zucman-Rossi J, Legoix P, Victor JM, Lopez B and Thomas G . (1998). Proc. Natl. Acad. Sci. USA, 95, 11786–11791.

Download references

Acknowledgements

This study was supported in part by Grant P12814-GEN from the Austrian Science foundation to HK and by private donations to the Children's Cancer Research Institute. We thank Dale Haines, Dave Aryee, and Jozef Ban for helpful comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Kovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovar, H., Pospisilova, S., Jug, G. et al. Response of Ewing tumor cells to forced and activated p53 expression. Oncogene 22, 3193–3204 (2003). https://doi.org/10.1038/sj.onc.1206391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206391

Keywords

This article is cited by

Search

Quick links