Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride?

Abstract

The literature has seen an incredible booming of publications related to the use of recombinant adenoviruses as therapeutic tools for lymphoproliferative disorders over the last decade. Several approaches of adenovirus-mediated gene expression have been used to transfect cell lines that are derived from lymphoid tumors and would have otherwise been refractory to other transfection methods. The identification of high-affinity receptor for human adenoviruses serotype 2 and 5, the coxsackie–adenovirus receptor (CAR), has raised the question about its relevance for the efficacy of recombinant adenovirus-mediated gene therapy. We review published studies that have analyzed the use of recombinant adenovirus vectors expressing cytotoxic genes for gene therapy in lymphomas, chronic lymphocytic leukemia and multiple myeloma. For simplicity, we group all these diseases under the term lymphoproliferative disorders. We analyze the use of recombinant adenovirus-mediated cytotoxicity by assessing the importance of the biochemical and intrinsic signaling pathways interacting with the products of the exogenous viral-mediated expression. Ultimately, we discuss studies that have been finalized to by-pass the limitations of the biodistribution of CAR by modifying or targeting adenovirus to other membrane proteins in cells derived from lymphoproliferative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dalla-Favera R, Gaidano G . Lymphomas. In: DeVita Jr VT, Hellman S, Rosenberg SA (eds). Cancer Principles and Practice of Oncology. Lippincott-Raven: Philadelphia, 2001; pp. 2215–2235.

    Google Scholar 

  2. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  3. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kipps TJ, Chu P, Wierda WG . Immunogenetic therapy for B-cell malignancies. Semin Oncol 2000; 27 (Suppl 12):: 104–109.

    CAS  PubMed  Google Scholar 

  5. Gorschluter M, Ziske C, Glasmacher A, Schmidt-Wolf IGH . Current clinical and laboratory strategies to augment the efficacy of immnunotherapy in multiple myeloma. Clin Cancer Res 2001; 7: 2195–2204.

    CAS  PubMed  Google Scholar 

  6. Danthinne X, Imperiale MJ . Production of first generation adenovirus vectors: a review. Gene Ther 2000; 7: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  7. Meeker TC et al. Adenoviral vectors efficiently target cell lines derived from selected lymphocytic malignancies including anaplastic large cell lymphoma and Hodgkin's disease. Clin Cancer Res 1997; 3: 357–364.

    CAS  PubMed  Google Scholar 

  8. Teoh G et al. Adenovirus vector-based purging of multiple myeloma cells. Blood 1998; 92: 4591–4601.

    CAS  PubMed  Google Scholar 

  9. Hollstein M, Sidransky D, Volgestein B, Harris CC . P53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  10. Lowe SW, Ruley HE, Jacks T, Housman DE . P53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen LL, Maneval DC . p53 tumor suppressor gene therapy for cancer. Cancer Gene Ther 1998; 5: 52–63.

    CAS  PubMed  Google Scholar 

  12. Turturro F, Seth P, Link Jr CJ . In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie-adenovirus receptor and ανβ5 integrin in SUDHL-1 cells derived from anaplastic large cell lymphoma. Clin Cancer Res 2000; 6: 185–192.

    CAS  PubMed  Google Scholar 

  13. Turturro F et al. Adenovirus-p53-mediated gene therapy of anaplastic large cell lymphoma with t(2;5) in a nude mouse model. Gene Ther 2000; 7: 930–933.

    Article  CAS  PubMed  Google Scholar 

  14. Buttgereit P et al. Effects of adenoviral wild-type p53 gene transfer in p53-mutated lymphoma. Cancer Gene Ther 2001; 8: 430–439.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Gazitt WS . Adenovirus-mediated delivery of p53 results in substantial apoptosis to myeloma cells and is not toxic to flow-sorted CD34+ hematopoietic progenitor cells and normal lymphocytes. Exp Hematol 2000; 28: 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q, El-Deiry WS, Gazitt Y . Additive effect of Apo2L/TRAIL and Adeno-p53 in the induction of apoptosis in myeloma cell lines. Exp Hematol 2001; 29: 962–970.

    Article  CAS  PubMed  Google Scholar 

  17. Craig C et al. A recombinant adenovirus expressing p27kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer. Oncogene 1997; 14: 2283–2289.

    Article  CAS  PubMed  Google Scholar 

  18. Katayose D, Wresto R, Cowan KH, Seth P . Effects of a recombinant adenovirus expressing WAF1/Cip1 on cell growth, cell cycle, and apoptosis. Cell Growth Dif 1995; 6: 1207–1212.

    CAS  Google Scholar 

  19. Craig C et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Oncogene 1998; 16: 265–272.

    Article  CAS  PubMed  Google Scholar 

  20. Turturro F et al. Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27Kip1. Oncogene 2001; 20: 4466–4475.

    Article  CAS  PubMed  Google Scholar 

  21. Turturro F et al. Comparison of the effects of recombinant adenovirus-mediated expression of wild-type p53 and p27Kip1 on cell cycle and apoptosis in SUDHL-1 cells derived from anaplastic large cell lymphoma. Leukemia 2001; 15: 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  22. Turturro F, Arnold MD, Frist AY, Seth P . Effects of adenovirus-mediated expression of p27Kip1, p21Waf1 and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease. Leuk Lymphoma 2002; 43: 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  23. Ni H et al. Analysis of expression of nuclear factor κ B (NF-κB) in multiple myeloma: downregulation of NF-κB induces apoptosis. Br J Haematol 2001; 115: 279–286.

    Article  CAS  PubMed  Google Scholar 

  24. Izban KF et al. Characterization of NF-κB expression in Hodgkin's Disease: inhibition of constitutively expressed NF-κB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed Sternberg cells. Mod Pathol 2001; 14: 297–310.

    Article  CAS  PubMed  Google Scholar 

  25. Braithwaite AW, Russell IA . Induction of cell death by adenoviruses. Apoptosis 2001; 6: 359–370.

    Article  CAS  PubMed  Google Scholar 

  26. Lucher LA . Abortive adenovirus infection and host range determinants. Curr Top Microbiol Immunol 1995; 199: 119–152.

    CAS  PubMed  Google Scholar 

  27. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW . P53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998; 4: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  28. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  29. Heise C et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  30. Medina DJ et al. Adenovirus-mediated cytotoxicity of chronic lymphocytic leukemia cells. Blood 1999; 94: 3499–3508.

    CAS  PubMed  Google Scholar 

  31. Bewley MC et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999; 286: 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  32. Nemerow GR, Stewart PL . Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999; 63: 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seth P . Entry of adenovirus into cells. In Seth P (ed). Adenoviruses: Basic Biology to Gene Therapy. RG Landes Company: Austin, 1999, pp. 31–37.

    Google Scholar 

  34. Hong SS et al. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16: 2294–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davison E, Kirby I, Elliott T, Santis G . The human HLA-A *0201 allele, expressed in hamster cells, is not a high-affinity receptor for adenovirus type 5 fiber. J Virol 1999; 73: 4513–4517.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roelvink PW et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998; 72: 7909–7915.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Leon RP et al. Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci USA 1998; 95: 13 159–13 164.

    Article  Google Scholar 

  38. Wan YY et al. Transgenic expression of the coxsackie/adenovirus receptor enables adenoviral-mediated gene delivery in naïve T cells. Proc Natl Acad Sci USA 2000; 97: 13 784–13 789.

    Article  Google Scholar 

  39. Schmidt MR, Piekos B, Cabatingan MS, Woodland RT . Expression of a human coxsackie/adenovirus receptor transgene permits adenovirus infection of primary lymphocytes. J Immunol 2000; 165: 4112–4119.

    Article  CAS  PubMed  Google Scholar 

  40. Tallone T et al. A mouse model for adenovirus gene delivery. Proc Natl Acad Sci USA 2001; 98: 7910–7915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Einfeld DA et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001; 75: 11 284–11 291.

    Article  Google Scholar 

  42. Honda T et al. The coxsackievirus–adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 2000; 77: 19–28.

    Article  CAS  PubMed  Google Scholar 

  43. Wattel E et al. Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia 1996; 10: 171–174.

    CAS  PubMed  Google Scholar 

  44. Huang MR et al. Efficient adenovirus-mediated gene transduction of normal and leukemic hematopoietic cells. Gene Ther 1997; 4: 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  45. Prince HM et al. Efficient adenovirus-mediated gene expression in malignant human plasma cells: relative lymphoid cell resistance. Exp Hematol 1998; 26: 27–36.

    CAS  PubMed  Google Scholar 

  46. Wickham TJ . Targeting adenovirus. Gene Ther 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  47. Gonzales R et al. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells. Hum Gene Ther 1999; 10: 2709–2717.

    Article  Google Scholar 

  48. Von Seggern DJ et al. Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein-Barr virus-transformed B cells. J Virol 2000; 74: 354–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Israel BF et al. Enhancement of adenovirus vector entry into CD70-positive B-cell lines by using a bispecific CD70-adenovirus fiber antibody. J Virol 2001; 75: 5215–5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turturro, F. Recombinant adenovirus-mediated cytotoxic gene therapy of lymphoproliferative disorders: is CAR important for the vector to ride?. Gene Ther 10, 100–104 (2003). https://doi.org/10.1038/sj.gt.3301842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301842

Keywords

This article is cited by

Search

Quick links