Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy

Abstract

Microglia are phagocytic cells that are chemoattracted by brain tumors and can represent up to 70% of the tumor cell population. To get insight into gene therapy against glioma, we decided to take advantage of those microglia properties and to use those cells as vehicles to transport simultaneously a suicide gene (under the control of a heat-sensitive promoter) and contrast agents to localize them by magnetic resonance imaging before applying any therapeutic treatment. Thymidine kinase (TK) expression and its functionality after gancyclovir administration were investigated. After the heat shock (44°C and 20 min), TK was expressed in 50% of the cells. However, after gancyclovir treatment, 90% of the cells died by apoptosis, showing an important bystander effect. Then, the cells were incubated with new lanthanide contrast agents to check both their potential toxicity and their MR properties. Results indicate that the nanoparticles did not induce any cell toxicity and yield a hypersignal on MR images at 4.7 T. These in vitro experiments indicate that microglia are good candidates as vectors in gene therapy against brain tumors. Finally, microglia containing gadolinium-grafted nanoparticles were injected in the close vicinity of C6 tumor, in a mouse. The hyperintensive signal obtained on in vivo images as well as its retention time show the potential of the novel contrast agents for cellular imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lawson LJ, Perry VH, Dri P, Gordon S . Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39: 151–170.

    Article  CAS  PubMed  Google Scholar 

  2. Streit W . Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002; 40: 133–139.

    Article  PubMed  Google Scholar 

  3. Badie B, Schartner J . Role of microglia in glioma biology. Microsc Res Tech 2001; 54: 106–112.

    Article  CAS  PubMed  Google Scholar 

  4. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K . Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 1979a and b; 50: 305–311.

    Article  CAS  PubMed  Google Scholar 

  5. Badie B, Schartner JM . Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 2000; 46: 957–961.

    CAS  PubMed  Google Scholar 

  6. Sawada M, Imai F, Suzuki H, Hayakawa M, Kanno T, Nagatsu T . Brain-specific gene expression by immortalized microglial cell-mediated gene transfer in the mammalian brain. FEBS Lett 1998; 433: 37–40.

    Article  CAS  PubMed  Google Scholar 

  7. Niola F, Evangelisti C, Campagnolo L, Massalini S, Bue MC, Mangiola A et al. A plasmid-encoded VEGF siRNA reduces glioblastoma angiogenesis and its combination with interleukin-4 blocks tumor growth in a xenograft mouse model. Cancer Biol Ther 2006; 5: 174–179.

    Article  CAS  PubMed  Google Scholar 

  8. Mullen CA, Coale MM, Lowe R, Blaese RM . Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994; 54: 1503–1506.

    CAS  PubMed  Google Scholar 

  9. Klatzmann D . Gene therapy for metastatic malignant melanoma: evaluation of tolerance to intratumoral injection of cells producing recombinant retroviruses carrying the herpes simplex virus type 1 thymidine kinase gene, to be followed by gancyclovir administration. Hum Gene Ther 1996; 7: 255–267.

    Article  CAS  PubMed  Google Scholar 

  10. Culver KW . Suicide genes for the treatment of cancer. In: Strauss M, Barranger JA (eds). Concepts in Gene Therapy. De Gruyter, 1997: 469–485.

    Google Scholar 

  11. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann J, Klatzmann D . Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 1993; 90: 7024–7028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiao J, Black ME, Caruso M . Enhanced ganciclovir killing and bystander effect of human tumor cells transduced with a retroviral vector carrying a herpes simplex virus thymidine kinase gene mutant. Hum Gene Ther 2000; 11: 1569–1576.

    Article  CAS  PubMed  Google Scholar 

  13. Burrows JF, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, Read SB et al. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 2002; 9: 87–95.

    Article  CAS  PubMed  Google Scholar 

  14. Spencer DM . Developments in suicide genes for preclinical and clinical applications. Curr Opin Mol Ther 2000; 2: 433–440.

    CAS  PubMed  Google Scholar 

  15. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H . Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  16. Scott SD, Joiner MC, Marples B . Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Ther 2002; 9: 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  17. Smith RC, Machluf M, Bromley P, Atala A, Walsh K . Spatial and temporal control of transgene expression through ultrasound-mediated induction of the heat shock protein 70B promoter in vivo. Hum Gene Ther 2002; 13: 697–706.

    Article  CAS  PubMed  Google Scholar 

  18. Guilhon E, Voisin P, De Zwart JA, Quesson B, Salomir R, Maurange C et al. Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J Gene Med 2003; 5: 333–342.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SC, Kim K, Kim J, Lee S, Han Yi J, Woo Kim S et al. One micrometer resolution NMR microscopy. J Magn Reson 2001; 150: 207–213.

    Article  CAS  PubMed  Google Scholar 

  20. Dousset V, Delalande C, Ballarino L, Quesson B, Seilhan D, Coussemacq M et al. In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 1999; 41: 329–333.

    Article  CAS  PubMed  Google Scholar 

  21. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ . Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 2004; 95: 613–626.

    Article  CAS  PubMed  Google Scholar 

  22. Mulder WJ, Strijkers GJ, Van Tilborg GA, Griffioen AW, Nicolay K . Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 2006; 19: 142–164.

    Article  CAS  PubMed  Google Scholar 

  23. Scheffler K . Basics of non-invasive angiography contrast-enhanced magnetic resonance angiography. JBR-BTR 2003; 86: 344–346.

    CAS  PubMed  Google Scholar 

  24. Geninatti Crich S, Cabella C, Barge A, Belfiore S, Ghirelli C, Lattuada L et al. In vitro and in vivo magnetic resonance detection of tumor cells by targeting glutamine transporters with Gd-based probes. J Med Chem 2006; 49: 4926–4936.

    Article  PubMed  Google Scholar 

  25. Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C . Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 2001; 3: 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001; 19: 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  27. Vekris A, Maurange C, Moonen C, Mazurier F, De Verneuil H, Canioni P et al. Control of transgene expression using local hyperthermia in combination with a heat-sensitive promoter. J Gene Med 2000; 2: 1–8.

    Article  Google Scholar 

  28. Guilhon E, Quesson B, Moraud-Gaudry F, De Verneuil H, Canioni P, Salomir R et al. Image-guided control of transgene expression based on local hyperthermia. Mol Imaging 2003; 2: 11–17.

    Article  CAS  PubMed  Google Scholar 

  29. Loimas S, Wahlfors J, Janne J . Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 1998; 24: 614–618.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Q, Hu JK, Lohr F, Zhang L, Braun R, Lanzen J et al. Heat-induced gene expression as a novel targeted cancer gene therapy. Cancer Res 2000; 60: 3435–3439.

    CAS  PubMed  Google Scholar 

  31. Moraud-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 2001; 98: 2664–2672.

    Article  Google Scholar 

  32. Richard E, Mendez M, Mazurier F, Morel C, Costet P, Xia P et al. Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol Ther 2001; 4: 331–338.

    Article  CAS  PubMed  Google Scholar 

  33. Kalbacova M, Vrbacky M, Drahota Z, Melkova Z . Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytometry A 2003; 52A: 110–116.

    Article  CAS  Google Scholar 

  34. Voisin PJ, Pardue S, Macouillard F, Yehia G, Labouesse J, Morrison-Bogorad M et al. Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res 1996; 739: 215–234.

    Article  CAS  PubMed  Google Scholar 

  35. Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadova E et al. Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magnetism and Magnetic Mat 2006; 302: 315–320.

    Article  CAS  Google Scholar 

  36. Asklund T, Appelskog IB, Ammerpohl O, Langmoen IA, Dilber MS, Aints A et al. Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSKtk gene. Exp Cell Res 2003; 284: 185–195.

    Article  CAS  PubMed  Google Scholar 

  37. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  38. Arafat WO, Casado E, Wang M, Alvarez RD, Siegal GP, Glorioso JC et al. Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells. Clin Cancer Res 2000; 6: 4442–4448.

    CAS  PubMed  Google Scholar 

  39. Macouillard-Poulletier de Gannes F, Belaud-Rotureau MA, Voisin P, Leducq N, Belloc F, Canioni P et al. Flow cytometric analysis of mitochondrial activity in situ: application to acetylceramide-induced mitochondrial swelling and apoptosis. Cytometry 1998b; 33: 333–339.

    Article  CAS  Google Scholar 

  40. Moore A, Weissleder R, Bogdanov A . Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 1997; 7: 1140–1145.

    Article  CAS  PubMed  Google Scholar 

  41. Lattuada L, Demattio S, Vincenzi V, Cabella C, Visigalli M, Aime S et al. Magnetic resonance imaging of tumor cells by targeting the amino acid transport system. Bioorg Med Chem Lett 2006; 16: 4111–4114.

    Article  CAS  PubMed  Google Scholar 

  42. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 2004; 25: 746–755.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Siemens Medical Solutions, France, FAME Network and the Aquitaine Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Ribot or A-K Bouzier-Sore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribot, E., Bouzier-Sore, AK., Bouchaud, V. et al. Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy. Cancer Gene Ther 14, 724–737 (2007). https://doi.org/10.1038/sj.cgt.7701060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701060

Keywords

This article is cited by

Search

Quick links